Skip to main content
Log in

Characterization of saturated porous bodies

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Measurement of the response of a saturated body to mechanical and thermal strains can be used to determine the permeability and viscoelastic properties of the body. For example, bending a saturated beam creates a pressure gradient in the pores, and as the liquid flows to equilibrate the pressure, the force required to sustain a fixed deflection decreases. Analysis of the kinetics of force relaxation yields the permeability, in addition to the elastic modulus of the body; if viscoelastic relaxation of the solid phase occurs, it can also be measured. This method permits measurement of very low permeabilities in minutes or hours, but it is useful only for structurally homogeneous materials (such as cement paste) that can be formed into slender beams. For concrete, it is more practical to find the permeability by analysis of thermal expansion kinetics. When a saturated body is heated, the liquid expands more than the solid, and the expansion of the liquid stretches the solid network like a spring; consequently, the apparent thermal expansion coefficient is high. During an isothermal hold, the solid phase squeezes the liquid out of the pores and the body contracts. Analysis of the kinetics of thermal dilatation yields the permeability of the body. Recent experiments reveal an anomalously high thermal expansion coefficient for the water confined in the small pores of cement paste.

Résumé

La mesure de la réponse d'un corps saturé à des déformations thermiques et mécaniques peut être utilisée pour déterminer la perméabilité et les propriétés viscoélastiques de ce corps. Par exemple, la flexion d'un barreau saturé crée un gradient de pression dans les pores, et à mesure que le liquide s'écoule pour équilibrer la pression, la force requise pour maintenir une déflexion imposée décroît. L'analyse de la cinétique de la force de relaxation fournit la perméabilité en plus du module d'élasticité du corps; l'éventuelle relaxation viscoélastique de la phase solide peut également être mesurée. Cette méthode permet des mesures de très basses perméabilités en quelques minutes ou quelques heures, mais elle n'est utile que pour des matériaux homogènes structurellement (tels que la pâte de ciment) et dont on peut constituer des barreaux souples. Pour le béton il est plus pratique de déterminer la perméabilité à partir de la cinétique de dilatation thermique. Quand un corps saturé est chauffé, le liquide se dilate plus que le solide et la dilatation du liquide étire le réseau solide comme un ressort, si bien que le coefficient de dilatation thermique est grand. Pendant un pallier isotherme, la phase solide presse le liquide hors des pores et le corps se contracte. L'analyse de la cinétique de dilatation thermique fournit la perméabilité du corps. Des expériences récentes montrent un coefficient de dilatation thermique anormalement élevé pour l'eau confinée dans les petits pores d'une pâte de ciment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powers, T.C., ‘The air requirement of frost-resistant concrete’, Proc. Highway Res. Board29, (1949) 184–211.

    Google Scholar 

  2. Baroghel-Bouny, V., Mainguy, M. and Coussy, O., ‘Isothermal drying process in weakly permeable-cementitious materials—Assessment of water permeability’, in ‘Materials Science of Concrete Special Volume: Ion and Mass Transport in Cement-Based Materials’, eds. R.D. Hooton, M.D.A. Thomas, J. Marchand and J.J. Beaudoin (Am. Ceram. Soc., Westerville, OH, 2001) 59–80.

    Google Scholar 

  3. Sherer, G.W., ‘Fundamentals of drying and shrinkage’, in ‘Science of Whitewares’, eds. V.E. Henkes, G.Y. Onoda and W.M. Carty (Am. Ceram. Soc., Westerville, OH 1996) 199–211.

    Google Scholar 

  4. Nyame, B.K. and Ilston, J.M., ‘Relationships between permeability and pore structure of hardened cement paste’,Mag. Concrete Res. 33 (116) (1981) 139–146.

    Article  Google Scholar 

  5. El-Dieb, A.S. and Hooton, R.D., ‘A high pressure triaxial cell with improved measurement sensitivity for saturated water permeability of high performance concrete’Cen. Concr. Res. 24(5) (1994) 854–862.

    Article  Google Scholar 

  6. Brace, W.F., Walsh, J.B. and Frangos, W.T., ‘Permeability of granite under high pressure’,J. Geophys. Res. 73 (1968) 2225–2236.

    Article  Google Scholar 

  7. Hsieh, P.A., Tracy, J.V., Neuzil, C.E., Bredehoeft, J.D. and Silliman, S.E., ‘A transient laboratory method for determining the hydraulic properties of “tight” rocks—I. Theory’,J. Rock. Mech. Min. Sci. and Geomech. Abstr. 18 (1981) 245–252.

    Article  Google Scholar 

  8. Hooton, R.D. and El-Dieb, A.S., ‘Evaluation of water permeability of high performance concrete’, in ‘Concrete Under Severe Conditions’, Vol. 1, eds. K. Sakai, N. Banthia and O.E. Gjørv (1995).

  9. Scherer, G.W., ‘Bending of gel beams: method of characterizing mechanical properties and permeability’,J. Non-Cryst. Solids 142 [1–2] (1992) 18–35.

    Article  Google Scholar 

  10. Scherer, G.W., ‘Relaxation of a viscoelastic gel. bar: I. Theory’,J. Sol-Gel Sci. Tech. 1 (1994) 169–175.

    Article  Google Scholar 

  11. Scherer, G.W., ‘Influence of viscoelasticity and permeability on the stress response of silica gel’,Langmuir 12 (5) (1996). 1109–1116.

    Article  MathSciNet  Google Scholar 

  12. Vichit-Vadakan, W. and Scherer, G.W., ‘Measuring permeability of rigid materials by a beam-bending method: II. Porous Vycor’,J. Am. Ceram. Soc. 83 (9) (2000) 2240–2245.

    Article  Google Scholar 

  13. Vichit-Vadakan, W. and Scherer, G.W., ‘Measuring permeability of rigid materials by a beam-bending method: III. Cement Paste’,J. Am. Ceram. Soc. 85 (6) (2002) 1537–1544.

    Article  Google Scholar 

  14. Vichit-Vadakan, W. and Scherer, G.W., ‘Beam-bending method for permeability and creep characterization of cement paste and mortar’, in ‘Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials’, eds. F.-J. Ulm., Z.P. Bažant and F.H. Wittmann (Elsevier, Amsterdam, 2001) 27–32.

    Google Scholar 

  15. Vichit-Vadakan, W. and Scherer, G.W. ‘Measuring permeability and stress relaxation by beam-bending’,Cement Concrete Res., in press.

  16. Valenza, J.J. II and Scherer, G.W., ‘Measuring permeability of rigid materials by a beam-bending method: V. Cement paste plates’, submitted toJ. Am. Ceram. Soc..

  17. Scherer, G.W., Hdach, H. and Phalippou, J., ‘Thermal expansion of gels: a novel method for measuring permeability’,J. Non-Cryst. Solids 130 (1991) 157–170.

    Article  Google Scholar 

  18. Ai, H., Young, J.F. and Scherer, G.W., ‘Thermal expansion kinetics: Method to measure permeability of cementious materials: II. Application to hardened cement paste’,J. Am. Ceram. Soc. 84 (2) (2001) 385–391.

    Article  Google Scholar 

  19. Valenza, J.J. and Scherer G.W., ‘Evidence for anomalous thermal expansion of pore water in cement paste’, to be submitted toCement and Concrete Research.

  20. Xu, S., Sweeney, D. and Scherer, G.W., ‘Direct measurement of anomalous thermal expansion of water in cement paste’, in preparation.

  21. Derjaguin, B.V., Karasev, V.V., Khromova, E.N., ‘Thermal expansion of water in fine pores’,J. Colloid Interface Sci. 109 (2) (1986) 586–587.

    Article  Google Scholar 

  22. Biot, M.A., ‘Theory of elasticity and consolidation for a porous anisotropic solid’,J. Appl. Phys. 26 (2) (1955) 182–185.

    Article  MATH  MathSciNet  Google Scholar 

  23. Biot, M.A. and Willis, D.G., ‘The elastic coefficients of the theory of consolidation’,J. Appl. Mech. 24 (1957) 594–601.

    MathSciNet  Google Scholar 

  24. Coussy, O., ‘Mechanics of Porous Continua’ (Wiley, New York, 1995).

    MATH  Google Scholar 

  25. Brinker, C.J. and Scherer, G.W., ‘Sol-Gel Science’, (Academic Press, New York, 1990).

    Google Scholar 

  26. Happel, J. and Brenner, H., ‘Low Reynolds number hydrodynamics’ (Martinus Nijhoff, Dordrecht, 1986) 389–404.

    MATH  Google Scholar 

  27. Scherer, G.W., ‘Stress in aerogel during depressurization of autoclave: I. Theory’,J. Sol-Gel Sci. Tech. 3 (1994) 127–139.

    Article  Google Scholar 

  28. Scherer, G.W., ‘Measuring permeability of rigid materials by a beam-bending method: I. Theory’,J. Am. Ceram. Soc. 83 (9) (2000) 2231–2239.

    Article  Google Scholar 

  29. and [30] Scherer, G.W., ‘Thermal expansion kinetics: Method to measure permeability of cementitious materials: I, Theory’J. Am. Ceram. Soc. 83 (11) (200) 2753–2761, the bulk modulus was erroneously defined in terms of the pressure in the liquid, rather than the stress on the solid network; that is true in the gel limit or for a suspension, whenK p =0, but not otherwise. The error leads to a change in the constants, but has a small effect (≈10%) on the permeability values extracted from the measurements. The incorrect formulation was used to analyze the experimental data Vichit-Vadakan, W. and Scherer, G.W., ‘Beam-bending method for permeability and creep characterization of cement paste and mortar’, in ‘Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials’, eds. F.-J. Ulm, Z.P. Bažant and F.H. Wittmann (Elsevier, Amsterdam, 2001) 27–32. Ai, H., Young, J.F. and Scherer, G.W., ‘Thermal expansion kinetics: Method to measure permeability of cementitious materials: II, Application to hardened cement paste’,J. Am. Ceram. Soc. 84 (2) (2001) 385–391 but has been corrected in all subsequent work.

    Article  Google Scholar 

  30. Scherer, G.W., ‘Thermal expansion kinetics: Method to measure permeability of cementitious materials: I, Theory’,J. Am. Ceram. Soc. 83 (11) (2000) 2753–2761.

    Article  Google Scholar 

  31. Scherer, G.W., ‘Measuring permeability of rigid materials by a beam-bending method: IV. Transversely isotropic plate’, submitted toJ. Am. Ceram. Soc.

  32. Scherer, G.W., ‘Structure and properties of gels’,Cement Concr. Res. 29 (8) (1999) 1149–1157.

    Article  Google Scholar 

  33. Scherer, G.W., ‘Effect of drying on properties of silica gel’,J. Non-Cryst. Solids 215 (2, 3) (1997) 155–168.

    Article  Google Scholar 

  34. Scherer, G.W., ‘Bending of gel, beams: effect of deflection rate and Hertzian indentation’,J. Non-Cryst. Solids 201 (1996) 1–25.

    Article  Google Scholar 

  35. Scherer, G.W., ‘Viscoelasticity and permeability of silica gels’, Faraday Disc.101 (1995) 225–234; 287–291.

    Article  Google Scholar 

  36. Debye, P. and Cleland, R.L., ‘Flow, of liquid hydrocarbons in porous VYCOR’,J. Appl Phys. 30 (6) (1959) 843–849.

    Article  Google Scholar 

  37. Scherer, G.W. ‘Relaxation in Glass and Composites’ (Wiley, New York, 1986; reprinted by Krieger, Malabar, FL., 1992).

    Google Scholar 

  38. Hildebrand, F.B. ‘Advanced Calculus for Applications’ (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

    MATH  Google Scholar 

  39. Ciardullo, J.P., Valenza, J.J. and Scherer, G.W., ‘Thermal expansion kinetics: Method to measure permeability of cementitious materials: IV. Effect of thermal gradients’, to be submitted toJ. Am. Ceram. Soc.

  40. Scherer, G.W., ‘Measuring permeability by the thermal expansion method for rigid or highly permeable gels’,J. Sol-Gel Sci. Tech. 3 (1994) 31–40.

    Article  Google Scholar 

  41. Scherer, G.W., ‘Thermal expansion of a viscoelastic gel’,J. Sol-Gel Sci. Tech. 4(3) (1995) 169–177.

    Article  Google Scholar 

  42. Meyers, S.L., ‘Thermal expansion characteristics of hardened cement paste and of concrete’,Proc. Highway Res. Board 30 (1950) 193–203.

    Google Scholar 

  43. Wittmann, F. and Lukas, J., ‘Experimental study of thermal expansion of hardened cement paste’,Mater. Struct. 7 (4) (1968) 247–252.

    Google Scholar 

  44. Helmuth, R.A., ‘Dimensional changes of hardened Portland cement pastes caused by temperature changes’,Proc. Highway Res. Board 40 (1961) 315–335.

    Google Scholar 

  45. Taylor, H.F.W., ‘Cement Chemistry., 2nd ed.’ (Thomas Telford, London, 1997).

    Google Scholar 

  46. Gallo, P., Ricci, M.A. and Rovere, M., ‘Layer analysis of the structure of water confined in Vycor glass’,J. Chem. Phys. 116 (1) (2002) 342–346.

    Article  Google Scholar 

  47. Carslaw, H.S. and Jaeger, J.C., ‘Conduction of Heat in Solids, 2nd ed’ (Clarendon, Oxford, 1959) 231.

    Google Scholar 

  48. Scherer, G.W., ‘Thermal expansion kinetics: Method to measure permeability of cementitious materials: III. Viscoelastic effects’, to be submitted toJ. Am. Ceram. Soc.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. George W. Scherer is a RILEM Senior Member and a member of the Editorial Advisory Commitee ofConcrete Science and Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, G.W. Characterization of saturated porous bodies. Mat. Struct. 37, 21–30 (2004). https://doi.org/10.1007/BF02481624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481624

Keywords

Navigation