Skip to main content
Log in

Microscopic physical basis of the poromechanical behavior of cement-based materials

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Contrary to other porous materials such as sandstones, bricks or porous glas, the inter-atomic bonding continuity of cement-based materials is far from obvious. When scrutinized at very microscopic level, continuity of the ionic-covalent bonding in the solid phase is almost everywhere interrupted by water molecules or liquid water films of variable thickness. Yet, concrete and cement pastes are able to withstand stresses of the same magnitude as rocks. The purpose of this paper to explore the possible reasons for such a high cohesion, in terms of inter-particle forces using general arguments and molecular simulation computations includingab initio quantum chemical methods applied toC-S-H. As it will be discussed, molecular simulation studies provide strong arguments for predicting that short-and medium-range attractive electrostatic forces are the essential components of the cohesion, ofC-S-H with, at short distance (sub-nm), a significant iono-covalent contribution involving strongly localized calcium ions and water molecules and, at larger distance (a few nm), ionic correlation forces involving hydrated and mobile calcium ions in liquid water films. Only a marginal contribution is expected from van der Waals attraction whereas capillary forces might contribute at a level comparable to that of correlation forces in unsaturated conditions. The parallel with clay-based earthen construction materials is part of the clue of this rationale.

Résumé

Contrairement à d'autres matériaux poreux comme les grès, les briques ou certains verres, les matériaux cimentaires ne possèdent pas un schéma simple de liaisons interatomiques. La continuité du réseau de liaisons iono-covalentes y est presque partout interrompue par des molécules d'eau ou des films d'eau d'épaisseur variable. Pourtant, le béton et les pâtes de ciment sont capables de supporter des contraintes du même ordre de grandeur que celles que supportent les roches. Nous avons analysé, les mécanismes de cette cohésion élevée en termes de forces interparticulaires, d'abord à l'aide d'arguments généraux, puis à l'aide de calculs de modélisation moléculaire, y compris des calculs de chimie quantique ab initio, appliqués aux C-S-H. Les résultats fournissent des arguments sérieux en faveur d'une cohésion principalement de type électrostatique avec, à très courte distance (sub-nm), une contribution iono-covalente impliquant des ions calcium et des molécules d'eau fortement localisées et, à plus grande distance (quelques nm), des forces de corrélation ionique dues à des ions calcium mobiles au sein de films d'eau liquide. Les forces de van der Waals n'auraient qu'une contribution marginale tandis que les forces capillaires pourraient avoir, en conditions fortement insaturées, une contribution comparable à celle des forces de corrélation ionique. La comparaison avec les argiles fournit un fil conducteur utile à cette analyse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Chatelier, H., ‘Recherches expérimentales sur la constitution des mortiers hydrauliques’ (Dunod, Paris, 1904).

    Google Scholar 

  2. Bentz, D.P., ‘Three-dimensional computer simulation of portland cement hydration and microstructure development’,J. Am. Ceram. Soc.,80 (1997) 3–21.

    Article  Google Scholar 

  3. Israelachvili, J., ‘Intermolecular and Surface Forces’, 2nd Edn. (Academic Press, San Diego, 1992).

    Google Scholar 

  4. Soroka, I. and Sereda, P.J., ‘The structure of cement stone and the use of compacts as structural models’, in ‘International Symposium on the Chemistry of Cement’, Tokyo, 1968, Supplementary paper III-34, 67–73.

  5. Powers, T.C. ‘Structure and physical properties of hardened Portland cement paste’,J. Am. Ceram. Soc.,41 (1958) 1–6 and references therein.

    Article  Google Scholar 

  6. Wittmann, F.H., ‘Surface tension, shrinkage and strength of hardened cement paste’,Mater. Struct. 6 (1968) 547–552.

    Google Scholar 

  7. Bažant, Z.P. and Wu, S.T., ‘Creep and shrinkage of concrete at variable humidity’,J. Engrg., Mech. Div., ASCE 100 (1974) 1183–1209.

    Google Scholar 

  8. Taylor, H.F.W., ‘Cement Chemistry’, 2nd Edn. (Thomas Telford Publishing, London, 1997).

    Google Scholar 

  9. Yu, P. and Kirkpatrick, R. J., ‘Thermal dehydration of tobermorite and jennite’,Concr. Sci. Eng. 1 (1999) 185–191.

    Google Scholar 

  10. Gmira, A., Pellenq, R.J.-M., Rannou, I., Duclaux, L., Clinard, C., Lequeux, N. and Van Damme, H., ‘Structural evolution of synthetic tobermorite upon dehydration and rehydration’,Cem. Concr. Res., submitted (2002).

  11. Powers, T.C. and Brownyard, T.L., ‘Studies on the physical properties of hardened cement paste’,Research Laboratories of the Portland Cement Association Bulletin 22 (March 1948).

  12. Lesko, S., Lesniewska, E., Nonat A., Mutin, J.C. and Goudonnet, J.P., ‘Investigation by atomic force microscopy of forces at the origin of cement cohesion’,Ultramicroscopy 86 (2001) 11–21.

    Article  Google Scholar 

  13. Barrer, R.M. and Tinker, P.B. (editors), ‘Clay Minerals: their Structure, Behavior and Use’ (Royal Society, London, 1984).

    Google Scholar 

  14. Van Olphen, H., ‘An Introduction to Clay Colloid Chemistry’, (Wiley, New York, 1977).

    Google Scholar 

  15. For a recent series of papers on the structure of C-S-H, see for instance chapters 8–17 in ‘Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials’, Part II, Colombet P., Grimmer, A.R., Zanni, H. and Sozzani P. editors (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  16. Nachbaur, L., Nkinamubanzi, P.C., Nonat, A. and Mutin, J.-C., ‘Electrokinetic properties which control the coagulation of silicate cement suspensions during early age hydration’,J. Coll. Interf. Sci. 202 (1998) 261–268.

    Article  Google Scholar 

  17. Terrasse-Viallis, H., Nonat, A. and Petit, J.C., ‘Zeta potential study of calcium silicate hydrate interacting with alkaline cations’,J. Coll. Interf Sci. 244 (2001) 58–65.

    Article  Google Scholar 

  18. Richardson, I.G., ‘The nature of C-S-H in hardened cements’,Cem. Concr. Res. 29 (1999) 1131–1147.

    Article  Google Scholar 

  19. Gatty, L., Bonnamy, S., Clinard, C., Feylessoufi, A., Richard, P. and Van Damme, H., ‘A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials’,J. Mater. Sci. 36 (2001) 4013–4026.

    Article  Google Scholar 

  20. Ben Ohoud, M. and Van Damme, H., ‘The fractal texture of swelling clays andclay-organic aggregates’,C. R. Acad. Sci. série II,311 (1990) 665–670.

    Google Scholar 

  21. Van Damme, H., ‘Structural hierachy and molecular accessibility in clayey, aggregates’, in: ‘Fractals in Soil Science’, Baveye, P., Parlange, J.Y. and Stewart, B.A. Editors (CRC Press, Boca Raton, 1998) 55–74.

    Google Scholar 

  22. Zabat, M., Vayer-Besancon, M., Harba, R., Bonnamy, S. and Van Damme, H. ‘Surface topography and mechanical properties of smectite films’,Progr. Colloid Polym. Sci. 105 (1997) 96–102.

    Article  Google Scholar 

  23. Norrish, K., ‘The swelling of montmorillonite’,Disc. Faraday Soc.,18 (1954), 120–134.

    Article  Google Scholar 

  24. Viani, B., Low, P.F. and Roth, C.B., ‘Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite’,J. Coll. Interf. Sci. 96 (1983) 229–244.

    Article  Google Scholar 

  25. Quirk, J.P. and Aylmore, L.A.G., ‘Domains and quasicrystalline regions in clay systems’,Soil Sci. Soc. Amer. J. 35 (1971) 652–654.

    Article  Google Scholar 

  26. Schramm, L.L. and Kwak, J.C.T., ‘Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension’,Clays & Clay Miner. 30 (1982) 40–48.

    Article  Google Scholar 

  27. Tessier, D., ‘Behaviour and microstructure of clay minerals’, in ‘Soil Colloids and their Association in Aggregates’, De Boodt, M., Hayes, M. and Herbillon, A. Editors (Plenum Press, New York, 1990) 387–415.

    Google Scholar 

  28. Verwey, E.J. and Overbeek, J.Th.G., ‘Theory of the Stability of Lyophobic Colloids’ (Elsevier, Amsterdam, 1948).

    Google Scholar 

  29. Derjaguin, B.V., Churaev, N.V. and Muller, V.M., ‘Surface Forces’ (Consultants Bureau, New York, 1987).

    Google Scholar 

  30. Evans D.F. and Wennerström, H., ‘The Colloidal Domain’ 2nd Edn. (Wiley-VSH, New York, 1999).

    Google Scholar 

  31. Norrish, K. and Rausel-Colom, J.A., ‘Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite’,Clays Clay Miner. 10 (1963) 123–149.

    Article  Google Scholar 

  32. Carnie, S.L. and Torrie, G.M., ‘The statistical mechanics of the electrical double layer’,Adv. Chem. Phys.,56 (1984) 141–253.

    Google Scholar 

  33. Sposito, G., ‘The diffuse-ion swarm near smectite particles suspended in 1:1 electrolyte solutions: modified Gouy-Chapman theory and quasicrystal formation’, in ‘Clay-Water Interface and its Rheological Implications’, Güven, N. and Pollastro, R.M., Editors (The Clay Mineral Society, Boulder, 1992) 127–155.

    Google Scholar 

  34. Quirk, J., ‘Interparticle forces: a basis for the interpretation of soil physical behavior’,Adv. Agron. 53, (1994) 121–183.

    Article  Google Scholar 

  35. Kjellander, R., Marcelja, S., Pashley, R.M. and Quirk, J.P., ‘Double-Layer Ion Correlation Forces Restrict Calcium-Clay Swelling’,J. Phys. Chem.,92 (1988) 6489–6492.

    Article  Google Scholar 

  36. Kjellander, R., Marcelja, S. and Quirk, J.P., ‘Attractive Double-Layer Interactions between Calcium Clay Particles’,J. Coll. Interf. Sci. 126, (1988) 194–211.

    Article  Google Scholar 

  37. Pashley, ‘Hydration forces between mice surfaces in aqueous electrolyte solutions’,J. Coll. Interf. Sci. 80 (1981) 153–162.

    Article  Google Scholar 

  38. Pashley, R. M., ‘DLVO and hydration forces between mica surfaces in Li+, Na+, K+ and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties’,J. Coll. Interf. Sci. 83 (1981) 531–545.

    Article  Google Scholar 

  39. Raviv, U. and Klein, J., ‘Fluidity of bound hydration layers’,Science 297 (2002) 1540–1543.

    Article  Google Scholar 

  40. Low, P.F. ‘Structural component of the swelling pressure of clays’,Langmuir,3 (1987) 18–25

    Article  Google Scholar 

  41. Chappuis, J. ‘A new model for a better understanding of the cohesion of hardened hydraulic materials’,Coll. & Surf. A. 156, (1999) 223–241.

    Article  Google Scholar 

  42. Kjellander, R., Marcelja, S., Pashley, R.M., and Quirk, J.P., ‘A theoretical and experimental study of forces between mica surfaces in aqueous CaCl2 solutions’,J. Chem. Phys. 92 (1990) 4399–4407.

    Article  Google Scholar 

  43. Acker, P., Baroghel-Bouny, V. and Garcia, S., ‘Can water be the glue?’, in ‘Hydration and Setting’, Nonat, A., Mutin, J.C. and Baron, J., editors (RILEM Publications S.A.R.L., 2000) 23–36.

  44. Guldbrand, L., Jönsson, B. Wennerström, H. and Linse, P., ‘Electrical double layer forces. A Monte Carlo study’,J. Chem. Phys. 80 (1984) 2221–2228.

    Article  Google Scholar 

  45. Kjellander, R. and Marcelja, S. ‘Correlation and image charge effects in electric double layers’Chem. Phys. Lett. 112 (1984) 49–53.

    Article  Google Scholar 

  46. Kjellander, R. and Marcelja, S., ‘Double-layer interaction in the primitive model and the corresponding Poisson-Boltzmann description’,J. Phys. Chem. 90 (1986) 1230–1232.

    Article  Google Scholar 

  47. Pellenq, R.J.-M., Delville, A. and Van Damme, H., ‘Cohesive and swelling behaviour of charged interfaces: a (N, V, T) Monte-Carlo study’, in ‘Characterization of Porous Solids IV’, McEnaney, B., Mays, T.J., Rouquerol, J., Rodriguez-Reinoso, F., Sing, K.S.W., and Unger, K.K., Editors, (The Royal Society of Chemistry, Cambridge, 1977), 596–603.

    Google Scholar 

  48. Pellenq, R.J.-M., Caillol, J.M. and Delville, A., ‘Electrostatic attraction between two charged surfaces: a (N, V, T) Monte Carlo simulation’,J. Phys. Chem. 101 (1997) 8584–8594.

    Google Scholar 

  49. Delville, A. and Pellenq, R.J.M., ‘Electrostatic attraction and/or repulsion between charged colloids’,Molec. Simul.,24 (2000) 1–24.

    Google Scholar 

  50. Gmira, A., ‘Étude texturale et thermodynamique d'hydrates modèles du ciment’, Thesis, University of Orléans, France (2003).

    Google Scholar 

  51. Gale, J., ‘Empirical potential derivation for ionic materials’,Phil. Mag. B 73 (1996) 3–19.

    Google Scholar 

  52. Gale, J., ‘GULP—A computer program for the symmetry adapted simulation of solids’,J. Chem. Soc. Faraday Trans,93 (1997) 629–637.

    Article  Google Scholar 

  53. Faucon, P., Delaye, J.M., Jacquinot, J.F. and Adenot, F., ‘The study of structural properties of the C-S-H (I) by molecular dynamics simulation’,Cem. Concr. Res. 10 (1997) 1581–1590.

    Article  Google Scholar 

  54. Kalinitchev, A. and Kirkpatrick, R.J., ‘Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases’,Chem. Mater. 14 (2002) 3539–3549.

    Article  Google Scholar 

  55. Hamid, S.A., ‘The crystal structure of the 11 Angström natural tobermorite’,Z. Kristallogr. 154, (1981) 189–198.

    Article  Google Scholar 

  56. Merlino, S., Bonaccorsi, E. and Armbrumster, T., ‘The real structure of tobermorite 11 A: Normal and anomalous forms’,Eur. J. Mineralogy 13 (2001) 577–590.

    Article  Google Scholar 

  57. Pisani, C., Editor, ‘Quantum mechanical ab-initio calculation of the properties of crystalline materials’, Springer Lectures in Chemistry177, Berlin (1996).

  58. Pavese, A., Catti, M., Ferraris, G., and Hull, S., ‘P-V equation of state of portlandite Ca(OH)2 from Powder neutron diffraction data’,Phys. Chem. Miner. 24 (1997) 85–89.

    Article  Google Scholar 

  59. Cho, S.W., Yang, C.C. and Huang, R., ‘Effect of sand ratio on the elastic modulus of self compacting concrete’,J. Marine Sci. Tech. 10 (2002) 8–13.

    MATH  Google Scholar 

  60. Su, J.K., Cho, S.W., Yang, C.C. and Huang, R., ‘Effect of aggregate volume fraction on the elastic moduli and void ratio of cement-based materials’,J. Marine Sci. Tech. 8 (2000) 1–7.

    Google Scholar 

  61. Velez, S.M., Damidot, D., Fantozi, G. and Sorrentino, F., ‘Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clincker’,Cem. Concr. Res. 31 (2001) 555–561.

    Article  Google Scholar 

  62. Boumiz, A., Sorrentino, D., Vernet, C. and Cohen Tenoudji, F., ‘Modeling the development of the elastic moduli as a function of the hydration degree of cement pastes and mortars’, in ‘Hydration and Setting’, Nonat, A., Editor (RILEM Pub. SARL 2000) 295–316.

  63. Martin, L.P., Lindgren, E.A., Rosen, M. and Sidhu, H., ‘Ultrasonic determination of elastic moduli in cement during hydrostatic loading to 1 GPa’,Mater. Sci. Eng. 279 (2000) 87–94.

    Article  Google Scholar 

  64. Acker, P. and Ulm, F.J., private communication.

  65. Taylor, H.F.W., ‘Cement Chemistry’, 2nd Edn. (Thomas Telford Publishing, London, 1997).

    Google Scholar 

  66. Gauffinet, S., Finot, E., Lesniewska, E. and Nonat, A., ‘Direct observation of the growth of calcium silicate hydrate on alite and silica surfaces by atomic force microscopy’,C.R. Acad. Sci. Paris, Earth and Planetary Sciences,327 (1998) 231–236.

    Google Scholar 

  67. Maggion, R., Bonnamy, S., Levitz, P. and Van Damme, H., ‘A scaling model of the microstructural evolution in C3S/C-S-H pastes’, in ‘The Modeling of Microstructure and its Potential for Studying Transport Properties and Durability’, Jennings, H., Kropp, J. and Scrivener, K., Editors,NATO ASI Series E: Applied Sciences 304 (Kluwer Academic Publishers, Dordrecht, 1996) 137–155.

    Google Scholar 

  68. Van Damme, H., ‘Colloidal chemo-mechanics of cement hydrates and smectite clays: cohesion vs swelling’ in ‘Encyclopedia of Surface and Colloid Science’, (Marcel Dekker, Inc., New York, 2002) 1087–1103.

    Google Scholar 

  69. Jennings, H.M., ‘A model for the microstructure of calcium silicate hydrate in cement paste’,Cem. Concr. Res. 30 (2000) 101–116.

    Article  Google Scholar 

  70. Viehland, D., Li, J.-F., Yuan, L.-J., and Xu, Z., ‘Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste: short-range ordering, nanocrystallinity, and local compositional order’,J. Am. Ceram. Soc. 79 (1996) 1731–1744.

    Article  Google Scholar 

  71. Gatty, L., Bonnamy, S., Clinard, C., Feylessoufi, A., Richard, P. and Van Damme, H., ‘A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials’,J. Mater. Sci. 36 (2001) 4013–4026.

    Article  Google Scholar 

  72. Delville, A., ‘From swelling to setting’, in ‘Hydration and Setting’, Nonat, A., Editor (RILEM Pub., SARL, 2000) 1–18.

  73. Bentur, A., Berger, R.L., Lawrence, F.V., Milestone, N.B., Mindess, S. and Young, J.F., ‘Creep and drying shrinkage of calcium silicate pastes: III. A hypothesis of irreversible strains’,Cem. Concr. Res. 9 (1979) 83–96.

    Article  Google Scholar 

  74. Wittmann, F.H., ‘Creep and shrinkage mechanisms’, in ‘Creep and Shrinkage in Concrete Structures’, Bažant, Z.P. and Wittmann, F.H., Editors (John Wiley & Sons Ltd, New York, 1982) 129–161.

    Google Scholar 

  75. Bažant, Z.P., Hauggaard, A.B., Baweja, S. and Ulm, F.-J., ‘Microprestress-solidification theory for concrete creep. I. Aging and drying effects’,J. Eng. Mech. ASCE 123 (1997) 1188–1194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gmira, A., Zabat, M., Pellenq, R.J.M. et al. Microscopic physical basis of the poromechanical behavior of cement-based materials. Mat. Struct. 37, 3–14 (2004). https://doi.org/10.1007/BF02481622

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481622

Keywords

Navigation