Materials and Structures

, 37:522 | Cite as

Moisture distribution in drying ordinary and high performance concrete cured in a simulated hot dry climate

  • P. F. de J. Cano-Barrita
  • B. J. Balcom
  • T. W. Bremner
  • M. B. MacMillan
  • W. S. Langley


Adequate moisture is very important during early age of portland cement concrete. The Single Point Magnetic Resonance Imaging technique was used to study the effects of various lengths of moist curing, and the use of curing compound, on the amount and distribution of evaporable water during drying of ordinary and high performance concrete. The specimens subjected to six different curing regimes, were cast in triplicate for a total of 72. After moist curing at 38°C, the specimens were subjected to uniaxial drying in an environmental chamber at 38°C and 40% relative humidity that simulated hot dry climate conditions. As the specimens were drying, Magnetic Resonance Imaging was used to study the evaporable water distribution, non-destructively and with millimetric resolution. The Magnetic Resonance Imaging profiles indicated a reduced moisture loss with increasing length of moist curing. Extended moist curing was especially beneficial for the two self-compacting concrete mixtures, particularly for the cover concrete. In all mixtures the use of curing compound was only marginally better than one day moist curing, but was significantly better than air curing, particularly for the cover concrete. The moisture diffusivity was evaluated from the transient moisture distribution profiles using the Boltzmann transformation method. The results indicated a strong dependence of the moisture diffusivity on the moisture content when above 80% saturation, whereas below this value it remains almost constant. The moisture diffusivity is significantly reduced with increased moist curing period.


Silica Fume Cover Concrete Moisture Diffusivity High Performance Concrete Evaporable Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Le maintien d'un taux d'humidité adéquat est très important pour un béton frais. La technique d'imagerie à résonance magnétique (à un point) est utilisée pour étudier les effets de la longueur de la période de mûrissement à l'humidité et de l'utilisation de produits de mûrissement sur la quantité et la distribution de l'eau évaporable lors du séchage du béton ordinaire et du béton à haute performance. Les échantillons aussjettis à six différents régimes de mûrissement, sont moulés en trois exemplaires pour un total de 72. Après mûrissement à l'humidité à une température de 38°C, les échantillons sont soumis à un séchage uniaxial dans un environnement contrôlé à une température de 38°C et une humidité relative de 40% pour simuler des conditions climatiques chaudes et sèches. Lors du séchage, une technique non-destructive, par imagerie à résonance magnétique, est utilisée pour étudier la distribution d'eau évaporable avec une résolution au millimètre près. Les profils obtenus par imagerie à résonance magnétique indiquent une réduction de la perte d'humidité lorsque de la période de mûrissement à l'humidité est prolongée. Un mûrissement à l'humidité prolongé est bénéfique spécialement pour les deux mélanges de bétons auto-plaçants, particulièrement pour le béton de surface. Pour les mélanges étudiés, l'utilisation de produits de mûrissements ne montre qu'une faible amélioration par rapport au mûrissement à l'humidité pendant un jour, mais offre un net avantage par rapport au mûrissement à l'air, particulièrement pour le béton de surface. Le coefficient de diffusion de l'humidité est évalué à partir du profil transitoire de la distribution de l'humidité au moyen de la transformation de Boltzmann. Les résultats indiquent que le coefficient de diffusion de l'humidité dépend fortement du degré d'humidité lorsque celui-ci est supérieur à 80% du degré d'humidité à la saturation. En deçà de ce niveau, il est presque constant. Le coefficient de diffusion de l'humidité diminue significativement avec l'allongement de la période de mûrissement.


  1. [1]
    Neville, A. and Aitcin, P., ‘High-performance concrete—An overview’,Mater. Struct. 31 (206) (1998) 111–117.Google Scholar
  2. [2]
    ACI Committee 308-99, 2001, ‘Curing of Concrete’, ACI, Farmington Hills, MI, pp. 305R-1–305R-20.Google Scholar
  3. [3]
    Ho, D. and Chirwin, G., ‘A performance specification for durable concrete’,Construction and Building Materials 10 (1996) 375–379.CrossRefGoogle Scholar
  4. [4]
    Berhane, Z., ‘The behavior of concrete in hot climates’,Mater. Struct. 25 (1992) 157–162.CrossRefGoogle Scholar
  5. [5]
    Soroka, I. and Ravina, D., ‘Hot weather concreting with admixtures’,Cement and Concrete Composites 20 (1998) 129–136.CrossRefGoogle Scholar
  6. [6]
    Yahuan, C. and Detwiler, R., ‘Backscattered electron imaging of cement pastes cured at elevated temperatures’,Cement and Concrete Research 25 (3) (1995) 627–638.CrossRefGoogle Scholar
  7. [7]
    Powers, T.C., ‘A discussion of cement hydration in relation to the curing of concrete’, Proceedings,Highway Research Board 27 (1947) 178–188.Google Scholar
  8. [8]
    Aitcin, P.C., ‘Demystifying autogenous shrinkage’,Concrete International, American Concrete Institute 22 (11) (1999) 54–56.Google Scholar
  9. [9]
    Okamura, H., ‘Self-compacting high performance concrete’,Concrete International, American Concrete Institute 19 (7) (1997) 50–54.Google Scholar
  10. [10]
    Yurugi, M., Sakata, N., Iwai, M. and Sakai, G., ‘Mix proportions for highly workable concrete’, in ‘Concrete 2000’, ed. R. K. Dhir and M. R. Jones (1993) 579–589.Google Scholar
  11. [11]
    Khayat, K., ‘Workability, testing, and performance of self-consolidating concrete’,ACI Materials Journal 96 (3) (1999) 346–353.Google Scholar
  12. [12]
    Persson, B., ‘A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete’,Cement and Concrete Research 31 (2001) 193–198.CrossRefGoogle Scholar
  13. [13]
    Selih, J. and Bremner, T. W., ‘Drying of saturated lightweight concrete: an experimental investigation’,Mater. Struct. 29 (1996) 401–405.Google Scholar
  14. [14]
    Akita, H., Fujiwara, T. and Ozaka, Y., ‘A practical procedure for the analysis of moisture transfer within concrete due to drying’,Magazine of Concrete Research 49 (179) (1997) 129–137.CrossRefGoogle Scholar
  15. [15]
    Bentz, D.P. and Hansen, K.K., ‘Preliminary observations of water movement in cement pastes during curing’,Cement and Concrete Research 30 (2000) 1157–1168.CrossRefGoogle Scholar
  16. [16]
    Pleinert, H., Sadouki, H. and Wittmann, F.H., ‘Determination of moisture distributions in porous building materials by neutron transmission analysis’,Mater. Struct. 31 (208) (1998) 218–224.CrossRefGoogle Scholar
  17. [17]
    Beyea, S.D., Balcom, B.J., Bremner, T.W., Prado, P.J., Green, D.P., Armstrong, R.L. and Grattan-Bellew, P.E., ‘Magnetic Resonance Imaging (MRI) of concrete drying profiles’,Cement and Concrete Research 28 (3) (1998) 453–446.CrossRefGoogle Scholar
  18. [18]
    Bohris, A.J., Goerke, U., McDonald, P.J., Mulheron, M., Newling, B. and Le Page, B., ‘A broad line NMR and MRI study of water and water transport in portland cement pastes’,Magnetic Resonance Imaging 16 (5/6) (1998) 455–461.CrossRefGoogle Scholar
  19. [19]
    Balcom, B.J., ‘SPRITE imaging of short relaxation time nuclei’, in ‘Spatially Resolved Magnetic Resonance’ ed. P. Blümler, B. Blumich, R. Botto and E. Fukushima (Wiley-VCH, Weinheim, 1998).Google Scholar
  20. [20]
    Beyea, S.D., Balcom, B.J., Bremner, T.W., Armstrong, R.L. and Cross, A.P., ‘The influence of micro cracking on the drying behavior of white Portland cement using Single Point Imaging (SPI)’,Solid State NMR 13 (1–2) (1998) 93–100.CrossRefGoogle Scholar
  21. [21]
    Hamad, B.S., ‘Investigations of chemical and physical properties of white cement concrete’,Advanced Cement Based Materials 2 (1995) 161–167.Google Scholar
  22. [22]
    Powers, T.C., Copeland, L.E. and Mann, H.M., ‘Capillary continuity or discontinuity in cement pastes’,Journal of Portland Cement Association, Research and Development laboratories 1 (2) (1959) 38–48.Google Scholar
  23. [23]
    Praul, M.F., ‘Curing for HPC bridge decks-bring on the water’,HPC Bridge Views 15 (2001) 1.Google Scholar
  24. [24]
    Ramezanianpour, A. and Malhotra, V.M., ‘Effect of curing on the compressive strength, resistance to chloride ion penetration and porosity of concretes incorporating slag, fly ash or silica fume’,Cement and Concrete Research 17 (1995) 125–133.CrossRefGoogle Scholar
  25. [25]
    Holt, E., ‘Where did these cracks come from?’,Concrete International, American Concrete Institute 23 (9) (2000) 57–60.Google Scholar
  26. [26]
    Kovler, K., ‘Shock of evaporative cooling of concrete in hot dry climates’,Concrete International, American Concrete Institute 17 (10) (1995) 65–69.Google Scholar
  27. [27]
    Bentz, D.P., Geiker, M.R. and Hansen, K.K., ‘Shrinkage reducing admixtures and early age desiccation in cement paste and mortars’,Cement and Concrete Research 31 (2001) 1075–1085.CrossRefGoogle Scholar
  28. [28]
    Weber, S. and Reinhardt, H.W., ‘A new generation of high performance concrete: concrete with autogenous curing’,Advanced Cement Based Materials 4 (6) (1997) 59–68.CrossRefGoogle Scholar
  29. [29]
    Jensen, O.M. and Hansen, P.F., ‘Water-entrained cement based materials: I. principles and theoretical background’,Cement and Concrete Research 31 (4) (2001) 647–654.CrossRefGoogle Scholar
  30. [30]
    Crank, J., ‘The Mathematics of Diffusion’ (Oxford University Press Inc, New York, 1975).MATHGoogle Scholar
  31. [31]
    Sakata, K., ‘A study on moisture diffusion in drying and drying shrinkage of concrete’,Cement and Concrete Research 13 (1983) 216–224.CrossRefGoogle Scholar
  32. [32]
    Pel, L., and Broken, H., ‘Determination of moisture diffusivity in porous media using moisture concentration profiles’,International Journal of Heat and Mass Transfer 39 (6) (1996) 127.CrossRefGoogle Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • P. F. de J. Cano-Barrita
    • 1
  • B. J. Balcom
    • 2
  • T. W. Bremner
    • 3
  • M. B. MacMillan
    • 2
  • W. S. Langley
    • 4
  1. 1.CIIDIR OaxacaNational Polytechnic Institute of MexicoMéxico
  2. 2.MRI Centre, Department of PhysicsUniversity of New BrunswickFrederictonCanada
  3. 3.Civil EngineeringUniversity of New BrunswickFrederictonCanada
  4. 4.W. S. Langley Concrete and Materials Technology IncSackvilleCanada

Personalised recommendations