Materials and Structures

, Volume 37, Issue 8, pp 506–512 | Cite as

Research on the seismic behavior of HPC shear walls after fire

  • J. -Zh. Xiao
  • J. Li
  • F. Jiang
Article

Abstract

Four shear wall specimens made of high-performance concrete with blast-furnace-slag (BFS-HPC) are tested and studied under low frequency cyclic loading. Prior to the cyclic test, three specimens are subjected to elevated temperatures (400°C, 600°C) and two of them are mixed with polypropylene fiber. Based on experimental results, different curves are drawn and analyzed to study the seismic behavior of BFS-HPC shear walls after fire. They include load vs. lateral displacement hysteretic curves, load vs. lateral displacement skeleton curves, energy dissipation capacity curves, and stiffness degradation curves etc. Besides, the effect of polypropylene fiber on the seismic behavior of BFS-HPC shear wall after fire is also examined. This investigation demonstrates that elevated temperature exposure dramatically decreases the seismic performance of BFS-HPC shear walls, whereas polypropylene fiber can remarkably improve the seismic behavior of BFS-HPC shear walls after fire.

Keywords

Lateral Load Fire Test Seismic Behavior Polypropylene Fiber Fire Exposure 

Résumé

Quatre essais sont étudiés pour des voiles en béton à hautes performances (BHP) à base de laitier de hautfourneau sous un chargement cyclique de basse fréquence. Trois échantillons sont soumis à une élévation de température (400°C, 600°C) et deux d'entre eux sont mélangés à de la fibre de polypropylène. Basé sur des résultats expérimentaux des courbes sont dessinées et analysées pour déterminer le comportement sismique des voiles en BHP après un feu et l'effet de la fibre de polypropylène sur le comportement sismique de voiles en BHP. Les courbes comprennent: les courbes d'hystérésie (chargement-déplacement latéral), les courbes squelettes chargement-déplacement latéral, les courbes de capacité de dissipation d'énergie, les courbes d'affaiblissement de rigidité du voile. L'étude a conclu que la haute température diminue gravement la capacité de comportement sismique de voile BHP, tandis que la fibre de polypropylène peut énormément améliorer le comportement sismique de voiles en BHP après un feu.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Schneider, U., ‘Concrete at elevated temperatures—A general review’Fire Safety Journal 13(1) (1988) 55–68.CrossRefGoogle Scholar
  2. [2]
    Xiao, J.-Zh. and König, G., ‘Study on concrete at elevated temperatures in China-An overview’,Fire Safety Journal 39 (1) (2004) 89–103.CrossRefGoogle Scholar
  3. [3]
    Felicetti, R. and Gambarova, P.G., ‘Effects of elevated temperatures on the residual compressive strength of high-strength siliceous concrete’,ACI Materials Journal 95(4) (1998) 395–406.Google Scholar
  4. [4]
    Chan, S.Y.N., Peng, G.F. and Anson, M., ‘Fire behavior of high-performance concrete made with silica fume at various moisture contents’,ACI Materials Journal 96(3) (1999) 405–409.Google Scholar
  5. [5]
    Lennon, T. and Clayton, N., ‘Fire test on high-grade concrete with polypropylene fibers’, 5th International Symposium on Utilization of HSC/HPC, V. Z, June, 1999.Google Scholar
  6. [6]
    Dotreppe, J.C., Franssen, J.M. and Vanderzeypen, Y., ‘Calculation method for design of reinforced concrete columns under fire conditions’,ACI Structural Journal 96(1) (1999) 9–18.Google Scholar
  7. [7]
    Scott, T.S., Ronald, G.B. and Anthony, E.F., ‘Fire endurance of high-strength concrete slabs’,ACI Materials Journal 85(2) (1988) 102–108.Google Scholar
  8. [8]
    Grozier, A., and Sanjayan, G., ‘Tests of load-bearing slender reinforced concrete walls in fire’ACI Structural Journal 97(2) (2002) 243–251.Google Scholar
  9. [9]
    Huang, Zh.-H. and Platten, A., ‘Nonlinear finite element analysis of planar reinforced concrete members subjected to fires’,ACI Structural Journal 94(3) (1997) 272–282.Google Scholar
  10. [10]
    Paulay, T. and Priestley, M.J.N., ‘Seismic design of reinforced concrete and masonry buildings’ (John Wiley and Sons, New York, 1992).Google Scholar
  11. [11]
    Gupta, A. and Rangan, B.V., ‘High-strength concrete (HSC) structural walls’,ACI Structural Journal 95(2) (1998) 194–204.Google Scholar
  12. [12]
    Liu, Zh.-W. and Zhou K.R., ‘Experimental investigation on the seismic behavior of high performance concrete shear wall’, Chinese National Conference on HSC and HPC, (2001), 438–444. (only available in Chinese)Google Scholar
  13. [13]
    Xiao, J.-Zh., Schneider, H., Dehn, F. and Tue, N.V., ‘Experimental study on the fire-response of BFS-HPC shear walls’, Proceedings of the International Symposia on Role of Concrete Bridge in Sustainable Development, 3–4 September 2003, Dundee, 195–204.Google Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • J. -Zh. Xiao
    • 1
  • J. Li
    • 1
  • F. Jiang
    • 1
  1. 1.Department of Building EngineeringTongji UniversityShanghaiP.R. China

Personalised recommendations