Materials and Structures

, Volume 32, Issue 3, pp 224–229 | Cite as

Molecular weight distribution of regular asphalts from dynamic material functions

  • L. Zanzotto
  • J. Stastna
  • S. Ho
Scientific Reports


Dynamic material functions are among the most sensitive tools for determining the molecular weight distribution of rheologically complex systems. The phase angle of the complex modulus especially is sensitive to the molecular weight of the studied material; it can therefore be used as the input to the inverse problem of determining the molecular weight from this important dynamic material function. Molecular weight distributions of several regular asphalts are calculated using the phase angle and compared with molecular weight distribution obtained by gel permeation chromatography. The problems of calculating molecular weight distributions from rheological parameters are also discussed.


Asphalt Phase Angle Molecular Weight Distribution Complex Modulus Master Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Les fonctions de matériau dynamique sont parmi les outils les plus sensibles pour déterminer la distribution de masse moléculaire des systèmes rhéologiques complexes. L'angle de phase du module complexe est spécialement sensible à la masse moléculaire du matériau étudié; il peut donc être utilisé comme donnée d'entrée pour le problème inverse afin de déterminer la masse moléculaire à partir de cette importante fonction de matériau dynamique. Les distributions de masse moléculaire de plusieurs asphaltes réguliers sont calculées en utilisant cet angle de phase et ensuite comparées avec la distribution de masse moléculaire obtenue par chromatographie sur gel perméable. Les problèmes de calcul des distributions de masse moléculaire à partir de paramètres rhéologiques sont aussi discutés.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mead, D. W., ‘Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions’,J. Rheol. 38 (1994) 1797–1827.CrossRefGoogle Scholar
  2. [2]
    Eder, G., Janeschitz-Kreigel, H., Liedauer, S., Schausberger, A., Stadlauer, W. and Schindlauer, G., ‘The influence of molar mass distribution on the complex moduli of polymer melts’,33 Google Scholar
  3. [3]
    Wasserman, S. H. and Graessley, W. W., ‘Effects of polydispersity on linear viscoelasticity in entangled polymer melts’,36 (1992) 543–571.CrossRefGoogle Scholar
  4. [4]
    Graessley, W. W., ‘Viscoelasticity and flow in polymer melts and concentrated solutions’, in ‘Physical Properties of Polymers’, ed. J. E. Mark, American Chemical Society, Washington, D.C. (1984).Google Scholar
  5. [5]
    Rudin, A. and Grinshpun, V., ‘Measurement of Mark-Houwink constants by size exclusion chromatography with a low angle laser light scattering detector’,Makromol. Chem. Rapid Commun. 6 (1985) 219.CrossRefGoogle Scholar
  6. [6]
    Tuminello, W. H., ‘Molecular weight and molecular weight distribution from dynamic measurement of polymer melts’,Polym. Eng. Sci. 26 (1986) 1339–1347.CrossRefGoogle Scholar
  7. [7]
    Wu, S., ‘Characterization of polymer molecular weight distributions by transient viscoelasticity: Polytetrafluoroethylenes’28 (1988) 538–543.CrossRefGoogle Scholar
  8. [8]
    Tuminello, W. H. and Cudre-Mauroux, ‘Determining molecular weight distributions from viscosity versus shear rate flow curves’,31 (1991) 1496–1507.CrossRefGoogle Scholar
  9. [9]
    Malkin, A. Y. and Teishev, A. E., ‘Flow curve molecular weight distribution: Is the solution of the inverse problem possible’,31 (1991) 1590–1596.CrossRefGoogle Scholar
  10. [10]
    Schuch, H., ‘Application of a blending rule for the complex viscosity of polymer melts’,Rheol. Acta 27 (1988) 384–396.CrossRefGoogle Scholar
  11. [11]
    Brodnyan, J. G., Gaskins, F. H., Philippoft, W. and Thellen, E., ‘The rheology of asphalt. III Dynamic mechanical properties of asphalt’,Trans. Soc. Rheol. 4 (1960) 279–296.CrossRefGoogle Scholar
  12. [12]
    Stastna, J., Zanzotto, L. and Ho, K., ‘Fractional relaxation modulus demonstrated in asphalts’,Rheol. Acta 33 (1994) 344–353.CrossRefGoogle Scholar
  13. [13]
    Zanzotto, L., Stastna, J. and Ho, K., ‘Characterization of regular and modified bitumensvia their complex modulus’,J. Appl. Poly Sci. 59 (1996) 1897–1905.CrossRefGoogle Scholar
  14. [14]
    Yen, T. F. and Dickie, J. P., ‘Microstructure of the asphaltic fractions by various instrumental methods’,Anal. Chem. 39 (1967) 1847–1852.CrossRefGoogle Scholar
  15. [15]
    Brulé, B., Ramond, G. and Such, C., ‘Relationships between composition, structure, and properties of road asphalts: State of research at the French Public Works Central Laboratory’,Transport. Res. Rec. 1096 (1986) 22–34.Google Scholar

Copyright information

© RILEM 1999

Authors and Affiliations

  • L. Zanzotto
    • 1
  • J. Stastna
    • 1
  • S. Ho
    • 1
  1. 1.Faculty of EngineeringThe University of CalgaryCalgaryCanada

Personalised recommendations