Materials and Structures

, Volume 32, Issue 3, pp 187–195 | Cite as

Modelling cement microstructure: Pixels, particles, and property prediction

  • D. P. Bentz
Scientific Reports


During the past ten years, a comprehensive model for the three-dimensional microstructural development of cement paste during hydration has been developed and validated. The model employs a number of computational and analytical tools including cellular automata, digital image processing and reconstruction, percolation theory, and the maturity method. The model has been successfully applied to predicting the percolation and diffusion properties of cement pastes. Through a kinetics calibration, the evolution of heat release, chemical shrinkage, and compressive strength with time have been predicted. The variation of curing temperature and availability of external curing water can also be simulated using the developed model. This paper reviews the computational tools employed in the model, summarizes the experimental and modelling approaches, and presents representative predicted properties.


Cellular Automaton Ordinary Portland Cement Ettringite Cement Paste Cement Hydration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Durant les dix dernières années, un modèle tri-dimensionnel pour le développement microstructurel de la pâte de ciment pendant l'hydratation a été développé et validé. Le modèle utilise un certain nombre d'outils informatiques et analytiques incluant un automate cellulaire, l'analyse d'images numériques et la théorie de la percolation. Le modèle a été utilisé avec succès pour prédire les propriétés de percolation et de diffusion des pâtes de ciment. Grâce à un étalonnage cinétique, l'évolution du dégagement de chaleur, le retrait chimique et la résistance à la compression ont pu être prévus. La variation de température de maturation et la disponibilité de l'eau de cure externe, peuvent être également simulées en utilisant le modèle développé. Cet article passe en revue les outils informatiques utilisés dans le modèle, résume les approches expérimentales et de modélisation et présente les propriétés prévues par le modèle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Garboczi, E. J. and Bentz, D. P., ‘Computational materials science of cement-based materials,’MRS Bull. 28 (3) (1993) 50–54.Google Scholar
  2. [2]
    Garboczi, E. J. and Bentz, D. P., ‘Computational materials science on the internet,’ACI Concr. Internat. 19 (12) (1998) 26–27, see also the monograph available over the Internet at|url Google Scholar
  3. [3]
    Taylor, H. F. W., ‘Cement Chemistry, 2nd. Ed. (Thomas Telford, London, 1997).Google Scholar
  4. [4]
    Frohnsdorff, G., ‘Partnership for high-performance concrete’, in ‘Proceedings of the International Symposium on High-Performance and Reactive Powder Concretes’, Ed. P.C. Aitcin, (1998) 51–73.Google Scholar
  5. [5]
    Bentz, D. P. and Garboczi, E. J., ‘Modelling the leaching of calcium hydroxide from cement paste: Effects on pore space percolation and diffusivity’,Mater. Struct. 25 (1992) 523–533.CrossRefGoogle Scholar
  6. [6]
    Bentz, D. P., Garboczi, E. J. and Martys, N. S., ‘Application of digital-image-based models to microstructure, transport properties, and degradation of cement-based materials’, in ‘The Modelling of Microstructure and Its Potential for Studying Transport Properties and Durability’, Ed. H. M. Jennings, J. Kropp, and K. L. Scrivener (Kluwer Academic Publishers, Dordrecht, 1996) 167–185.Google Scholar
  7. [7]
    Bentz, D. P., ‘Three-dimensional computer simulation of portland cement hydration and microstructure development’,J. Am. Ceram. Soc. 80 (1) (1997) 3–21.CrossRefGoogle Scholar
  8. [8]
    Bentz, D. P., ‘Guide to using CEMHYD3D: A three-dimensional cement hydration and microstructure development modelling package’, NISTIR 5977, U.S. Dept. of Commerce, February 1997, software and manual available over the Internet from anonymous ftp at ( in the /pub/CEMHYD3D subdirectory.Google Scholar
  9. [9]
    Castleman, K. R., ‘Digital Image Processing’, (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979).Google Scholar
  10. [10]
    ‘Digital Image Processing: Techniques and Applications in Civil Engineering’, Ed. J. D. Frost and J. R. Wright (American Society of Civil Engineers, 1993).Google Scholar
  11. [11]
    Scrivener, K. L., ‘The microstructure of anhydrous cement and its effect on hydration’, in Proceedings, Materials Research Society Symposia, 85, Ed. L. J. Struble and P. W. Brown (Materials Research Society, Pittsburgh, PA, 1987) 39–46.Google Scholar
  12. [12]
    Stutzman, P. E., ‘Cement clinker characterization by scanning electron microscopy’,Cem. Concr. Aggregates 13 (2) (1991) 109–114.Google Scholar
  13. [13]
    Scrivener, K. L. and Pratt, P. L., ‘Characterization of interfacial microstructure’, in ‘Interfacial Transition Zone in Concrete’, Ed. J. C. Maso (E & FN Spon, London, 1996) 3–17.Google Scholar
  14. [14]
    ‘Annual Book of ASTM Standards’ Vol. 04.01. Cement; Lime; Gypsum (ASTM, Philadelphia, PA, 1995).Google Scholar
  15. [15]
    Bentz, D. P. and Stutzman, P. E., ‘SEM analysis and computer modelling of hydration of portland cement particles’, in ‘Petrography of Cementitious Materials’, Ed. S. M. DeHayes and D. Stark (ASTM, Philadelphia, PA, 1994) 60–73.Google Scholar
  16. [16]
    Garboczi, E. J., ‘Manual for finite difference and finite element techniques’, NISTIR 6269 U.S. Dept. of Commerce, Dec. 1998. also available over the Internet at Scholar
  17. [17]
    Jennings, H. M. and Johnson, S. K., ‘Simulation of microstructure development during the hydration of a cement compound’,J. Am. Ceram. Soc. 69 (1986) 790–795.CrossRefGoogle Scholar
  18. [18]
    Cellular Automata: Theory and Experiment’, Ed. J. Gutowitz (MIT Press, Cambridge, MA, 1991).MATHGoogle Scholar
  19. [19]
    Wolfram, S., ‘Theory and Applications of Cellular Automata’, (World Scientific, Singapore, 1986).MATHGoogle Scholar
  20. [20]
    Bentz, D. P., Coveney, P., Garboczi, E. J., Kleyn, M. and Stutzman, P. E., ‘Cellular automaton simulations of cement hydration and microstructure development’,Modell. Simul. Mater. Sci. Eng. 2 (4) (1994) 783–808.CrossRefGoogle Scholar
  21. [21]
    Pimienta, P. J., Garboczi, E. J. and Carter, W. C., ‘Cellular automaton algorithm for surface mass transport due to curvature gradients: Simulations of sintering’,Comput. Mater. Sci. 1 (1992) 63–77.CrossRefGoogle Scholar
  22. [22]
    Spittle, J. A. and Brown, S. G. R., ‘A cellular automaton model of steady-state columnar-dendritic growth in binary alloys’,J. Mater. Sci. 30 (1995) 3989–3994.CrossRefGoogle Scholar
  23. [23]
    Karapiperis, T., ‘Cellular automaton model of precipitation/dissolution coupled with solute transport’,J. Stat. Phys. 81 (1995) 165–180.CrossRefMATHGoogle Scholar
  24. [24]
    Stauffer, D. and Aharony, A., ‘Introduction to Percolation Theory’, 2nd. Edn. (Taylor and Francis, London, 1992).MATHGoogle Scholar
  25. [25]
    Hammersley, J. M..Proc. Cambridge Phil. Soc. 53 (1957) 642.MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    Garboczi, E. J. and Bentz, D. P., ‘The microstructure of portland cement-based materials: Computer simulation and percolation theory’,Mat. Res. Soc. Symp. Proc.,Vol. 529 (1998) 89–100.Google Scholar
  27. [27]
    Bentz, D. P. and Garboczi, E. J., ‘Percolation of phases in a three-dimensional cement paste microstructure models’,Cem. Concr. Res. 21 (2/3) (1991) 325–344.CrossRefGoogle Scholar
  28. [28]
    van Eijk, R. J. and Brouwers, H. J. H., ‘Study of the relation between hydrated portland cement composition and leaching resistance’,28 (6) (1998) 815–828.CrossRefGoogle Scholar
  29. [29]
    Joshi, M., ‘A Class of Stochastic Models for Porous Media’, Ph. D. Thesis, Univ. of Kansas, 1974.Google Scholar
  30. [30]
    Quiblier, J. A., ‘A new three-dimensional modeling technique for studying porous media’,J. Colloid. Inter. Sci. 98 (1) (1984) 84–102.Google Scholar
  31. [31]
    Bentz, D. P. and Martys, N. S., ‘Hydraulic radius and transport in reconstructed model three-dimensional porous media’,Transport in Porous Media 17 (3) (1994) 221–238.CrossRefGoogle Scholar
  32. [32]
    Quenard, D. A., Xu, K., Kunzel, H. M., Bentz, D. P. and Martys, N. S., ‘Microstructure and transport properties of porous building materials’,Mater. Struct. 31 (209) (1998) 317–324.CrossRefGoogle Scholar
  33. [33]
    Bentz, D. P., Garboczi, E. J. and Quenard, D. A., ‘Modelling drying shrinkage in reconstructed porous materials: Application to porous vycor glass’,Modell. Simul. Mater. Sci. Eng. 6 (1998) 1–26.CrossRefGoogle Scholar
  34. [34]
    Carino, N. J., ‘The maturity method: Theory and application’,Cem. Concr. Aggregates 6 (2) (1984) 61–73.Google Scholar
  35. [35]
    Carino, N. J., Knab, L. I. and Clifton, J. R., ‘Applicability of the Maturity Method to High-Performance Concrete’, NISTIR 4819, U.S. Dept. of Commerce, May 1992.Google Scholar
  36. [36]
    Knudsen, T., ‘The dipersion model for hydration of portland cement I. general concepts’,Cem. Concr. Res. 14 (1984) 622–630.CrossRefGoogle Scholar
  37. [37]
    Bentz, D. P., Waller, V. and de Larrard, F., ‘Prediction of the adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructure model’,28 (2) (1998) 285–297.CrossRefGoogle Scholar
  38. [38]
    RILEM Technical Committee 66-MMH, ‘Mathematical modelling of hydration of cement: The hydration of tricalcium aluminate and tetracalcium aluminoferrite in the presence of calcium sulfate’,Mater. Struct. 19 (1986) 137.Google Scholar
  39. [39]
    ‘Handbook of Chemistry and Physics’, 63rd Edn., (CRC Press, Boca Raton, FL, 1982) B73–B166 and D52–D95.Google Scholar
  40. [40]
    Bentz, D. P., Snyder, K. A. and Stutzman, P. E., ‘Microstructure modelling of self-desiccation during hydration’, in ‘Self-Desiccation and Its Importance in Concrete Technology’, Ed. B. Persson and G. Fagerlund (Lund Institute of Technology, Lund, Sweden, 1997) 132–140.Google Scholar
  41. [41]
    Nonat, A., ‘Interactions between chemical evolution (hydration) and physical evolution (setting) in the case of tricalcium silicate’,Mater. Struct. 27 (1994) 187–195.CrossRefGoogle Scholar
  42. [42]
    Jiang, S. P., Mutin, J. C. and Nonat, A., ‘Studies on mechanism and physico-chemical parameters at the origin of cement setting: I. the fundamental processes involved during the cement setting’,Cem. Concr. Res. 24 (4) (1995) 779–789.CrossRefGoogle Scholar
  43. [43]
    Powers, T. C., Copeland, L. E. and Mann, H. M.,PCA Bulletin 10 (1959).Google Scholar
  44. [44]
    Garboczi, E. J. and Bentz, D. P., ‘Computer simulation of the diffusivity of cement-based materials’,J. Mater. Sci. 27 (1992) 2083–2092.CrossRefGoogle Scholar
  45. [45]
    Bentz, D. P., Garboczi, E. J. and Lagergren, E. S., ‘Multi-scale microstructure modeling of concrete diffusivity: Identification of significant variables’,Cem. Concr. Aggregates 20 (1) (1998) 129–139.CrossRefGoogle Scholar
  46. [46]
    Mindess, S. and Young, J. F., ‘Concrete’, (Prentice-Hall, Englewood Cliffs, NJ, 1981).Google Scholar
  47. [47]
    Waller, V., de Larrard, F. and Roussel, P., 4th Int. Symp. Utilization of High-Strength/High-Performance Concrete, RILEM (1996), 415–421.Google Scholar
  48. [48]
    ‘Thermal Cracking in Concrete at Early Ages’, (E & FN Spon, London, 1995).Google Scholar
  49. [49]
    Bentz, D. P. and Remond, S., ‘Incorporation of Fly Ash into a 3-D Cement Hydration Microstructure Model’, NISTIR 6050, U.S. Dept. of Commerce, August 1997.Google Scholar
  50. [50]
    Clifton, J. R. and Knab, L. I., ‘Service Life of Concrete’, NISTIR 89-4086, U.S. Dept. of Commerce, 1989.Google Scholar

Copyright information

© RILEM 1999

Authors and Affiliations

  • D. P. Bentz
    • 1
  1. 1.Building and Fire Research LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations