Skip to main content
Log in

Deformation and fracture properties of damage tolerant in-situ titanium matrix composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper discusses the tensile response and fracture toughness of in-situ titanium alloy metal matrices discontinuously-reinforced with whiskers of titanium boride which were success-fully produced by ingot metallurgy techniques. Additions of elemental boron resulted in a near uniform dispersion of the rod-like titanium boride (TiB) reinforcements in the alloy matrix. Such composites have engendered considerable scientific and technological interest due to their attractive combinations of improved mechanical properties and low manufacturing cost. The improved elastic moduli of the composites are explained using shear lag and rule-of-mixtures theories. The increased strengths of the in-situ composites are rationalized by considering the combined effects of deformation restrains imposed by the stiff whiskers and strengthening contributions arising from the substructure that evolves from the presence of additional dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson, O. Edward,Advanced Materials and Processes, June 1991, 18–21.

  2. Wadsworth, J. and Froes, F. H.,Journal of Metals 41, 1989, 12–19.

    CAS  Google Scholar 

  3. Srivatsan, T. S. and Sudarshan, T. S., inRapid Solidification Technology; An Engineering Guide (eds. T. S. Srivatsan and T. S. Sudarshan), Technomic Publishing Inc., PA, 1993, pp. 603–700.

    Google Scholar 

  4. Divecha, A. P., Crowe, C. R., and Fishman, S. G., inFailure Modes in Composites IV, Metallurgical Society of AIME, Warrendale, PA, 1977, pp. 406–411.

    Google Scholar 

  5. Divecha, A. P., Fishman, S. G., and Karmarkar, S. D.,Journal of Metals 33, 1981, 12–16

    CAS  Google Scholar 

  6. Taya, M. and Arsenault, R.J., inMetal Matrix Composites: Thermomechanical Behavior, Pergamon Press, Elmsford, New York, 1989.

    Google Scholar 

  7. Koss, D. A. and Copley, S. M.,Metallurgical Transactions 2A, 1971, 1557–1560.

    Google Scholar 

  8. Brown, L. M. and Stobbs, W. M.,Philosophical Magazine 23, 1971, 1185–1189.

    CAS  Google Scholar 

  9. Nair, S. V., Tien, J. K. and Bates, R. C.,International Metals Reviews 30(6), 1985, 285–296.

    Google Scholar 

  10. McDanels, D. L.,Metallurgical Transactions 16A, 1985, 1105–1115.

    CAS  Google Scholar 

  11. Dermarkar, S.,Metals and Materials 2, 1986, 144–147.

    CAS  Google Scholar 

  12. Hunt, W. H., Jr. Cook, C. R. and Sawtell, R. R., ‘Cost Effective High Performance Powder Metallurgy Aluminum Matrix Composites for Automotive Applications’, SAE Technical Paper Series 910834, Warrendale, PA, February 1991.

  13. Hunt, W. H., Jr., ‘Cost Effective High Performance Aluminum Matrix Composites for Aerospace Applications’, presented at the International Conference on PM Aerospace Materials, Lausanne, Switzerland, November 1991.

  14. Nair, S. V., Tien, J. K. and Bates, R. C.,International Metals Reviews 30(6), 1985, 285–296.

    Google Scholar 

  15. McDanels, D. L.,Metallurgical Transactions 16A, 1985, 1105–1115.

    CAS  Google Scholar 

  16. Doychak, J.,Journal of Metals 44(6), 1992, 46–51.

    CAS  Google Scholar 

  17. Johnson, A. M. and Wright, P. K. ‘Applications of Advanced Materials to Aircraft Gas Turbine Engines’, AIAA: 90-92281, 1990.

  18. Ronald, T. M. F., ‘An Overview of NASP Materials and Structures Program’, inNASP-CP 10082, 1991, pp. 3–1.

  19. Saito, T., Furuta, T. and Yamaguchi, T., inDevelopments of Low-Cost Titanium Matrix Composites, The Minerals, Metals and Materials Society, Warrendale, PA, 1995.

    Google Scholar 

  20. Bhagat, R. B., inMetal Matrix Composites: Processing and Interfaces (eds. R. K. Everett and R. J. Arsenault), Academic Press, New York, NY, 1991, pp. 43–78.

    Google Scholar 

  21. Rack, H. J., inMetal Matrix Composites: Processing and Interfaces (eds. R. K. Everett and R. J. Arsenault), Academic Press, New York, NY, 1991, pp. 85–90.

    Google Scholar 

  22. Sastry, S. M. L., O'Neal, J. E. and Peng, T. C., ‘Advanced Titanium Composites’,U. S. Patent No. 4639281.

  23. Sastry, S. M. L., O'Neal, J. E. and Peng, T. C., inMicrostructural Science, Proceedings of the International Metallographic Society, Elsevier Applied Science Publishers, New York, NY, 1986.

  24. Lewis, D., inMetal Matrix Composites: Processing and Interfaces (eds. R. K. Everett and R. J. Arsenault), Academic Press, New York, NY, 1991, pp. 121–150.

    Google Scholar 

  25. Courtney, T. H., inMetal Matrix Composites: Mechanisms and Properties (eds. R. K. Everett and R. J. Arsenault), Academic Press, New York, NY, 1991, pp. 101–120.

    Google Scholar 

  26. Chu, M. G. and Premkumar, M. K.,Metallurgical Transactions 24A, 1993, 2803–2805.

    CAS  Google Scholar 

  27. Premkumar, M. K. and Chu, M. G.,Metallurgical Transactions 24A, 1993, 2358–2362.

    CAS  Google Scholar 

  28. Soboyejo, W. O. Lederich, R. J. and Sastry, S. M. L.,Acta Metallurgica Materialia 42, 1994, 2579–2591.

    Article  CAS  Google Scholar 

  29. Soboyejo, W. O., Lederich, R. J. and Sastry, S. M. L., inHigh Performance Composites for the 1990s (eds. S. K. Das, C. P. Ballard and F. Marikar), 1991, pp. 127–141.

  30. Lederich, R. J., Soboyejo, W. O. and Srivatsan, T. S.,Journal of Metals 46, 1994, 68–71.

    CAS  Google Scholar 

  31. Rack, H. J. and Ratnaparkhi, P.,Journal of Metals 11, 1988, 55–58.

    Google Scholar 

  32. ASTM Standard E-8. ‘Standard Test Methods for Tension Testing of Metallic Materials’,1993 Annual Book of ASTM Standards, Metals Test methods and Analytical Procedures, Vol. 3.01, ASTM, Philadelphia, U.S.A.

  33. Dvorak, G. J., ‘Plasticity Theories for Fibrous Composite Materials’ inMetal Matrix Composites: Mechanisms and Properties (eds. R. K. Everett and R. J. Arsenault), Academic Press, San Diego, CA, 1991.

    Google Scholar 

  34. Cox, H. L.,British Journal of Applied Physics 3, 1952, 72–80.

    Article  Google Scholar 

  35. Nardone, V. C. and Prewo, K. M.,Scripta Metallurgica 20, 1985, 43–48.

    Article  Google Scholar 

  36. Taya, M. and Arsenault, R. J.,Scripta Metallurgica 21, 1987, 349–354.

    Article  CAS  Google Scholar 

  37. Soboyejo, W. O., Lederich, R. J. and Sastry, S. M. L., ‘Mechanical Behavior of Damage Tolerant TiB Whister Reinforced In-Situ TMCs’,Acta Metallurgica et Materialia 42(8), 1994, 2579–2591.

    Article  CAS  Google Scholar 

  38. Dubey, S., Soboyejo, W. O. and Lederich, ‘Engineering of Damage Tolerant In-Situ Titanium Matrix Composites,’ASME Paper No. 96/AMD-8, American Society of Mechanical Engineers, Atlanta, GA, USA, 1996.

    Google Scholar 

  39. Dvorak, G. J., Rao, M. S. M. and Tarn, J. Q.,Journal of Composite Materials 7, 1973, 194–200.

    CAS  Google Scholar 

  40. Nardone, V. C.,Scripta Metallurgica 21, 1987, 1313–1317.

    Article  CAS  Google Scholar 

  41. Arsenault, R. J.,Materials Science and Engineering 64, 1984, 171–180.

    Article  CAS  Google Scholar 

  42. Arsenault, R. J., Wang, L. and Feng, C. R.,Acta Metallurgica et Materialia 39(1), 1991, 47–57.

    Article  CAS  Google Scholar 

  43. Vogelsang, M., Arsenault, R. J. and Fisher, R. M.,Metallurgical Transactions 127A, 1986, 379–388.

    Google Scholar 

  44. Beck, J. and Karasek, K. R., inDevelopments and Applications in Composites (eds. W. C. Harrigan, Jr., and D. Kuhlmann Wilsdorf), TMS, Warrendale, PA, 1979, pp. 101–120.

    Google Scholar 

  45. Karasek, K. R. and Bevk, J.,Journal of Applied Physics 52, 1981, 1370.

    Article  CAS  Google Scholar 

  46. Funkenbusch, P. D. and Courtney, T. H.,Acta Metallurgica 33, 1985, 913–920.

    Article  CAS  Google Scholar 

  47. Funkenbusch, P. D., Lee, J. K. and Courtney, T. H.,Metallurgical Transactions 18A, 1987, 1249–1255.

    CAS  Google Scholar 

  48. Ashby, M. F., inStrengthening Methods in Crystals (eds. A. Kelly and R. B. Nicholson), Wiley Interscience, New York, 1971, pp. 137–147.

    Google Scholar 

  49. Spitzig, W. A., Pelton, A. R. and Laabs, F. C.,Acta Metallurgica 35, 1987, 2427–2437

    Article  CAS  Google Scholar 

  50. Spitzig, W. A., and Krotz, P. D.,Acta Metallurgica 36, 1988, 1709–1719.

    Article  CAS  Google Scholar 

  51. Arsenault, R. J., inMetal Matrix Composites: Mechanisms and Properties (eds. R. K. Evertt and R. J. Arsenault) Academic Press, San Diego, CA, 1991, pp 79–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, S., Soboyejo, W.O. & Srivatsan, T.S. Deformation and fracture properties of damage tolerant in-situ titanium matrix composites. Appl Compos Mater 4, 361–374 (1997). https://doi.org/10.1007/BF02481400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481400

Keywords

Navigation