Skip to main content
Log in

The shear fracture of concrete under impact loading using end confined beams

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

An investigation of the shear fracture of plain and steel fibre reinforced concrete (SFRC) under impact loading was carried out on both unconfined and confined beams. It was found that confinement played a significant role on the behaviour and properties of both plain and SFRC beams.

A shear mode of failure could be obtained with increasing end confinement stresses. End confined concrete beams were stronger and tougher than unconfined ones, as indicated by the increase in both peak load and fracture energy. However, they were found to be less stress rate sensitive than unconfined concrete beams. This was due to the change in the failure mode from flexure to shear with sufficient end confinement. Using end confinement appears to be a promising method for the study of shear fracture in concrete.

Résumé

Une étude du cisaillement du béton entier et du béton renforce par des fibres métalliques (SFRC) a été effectue sur des poutres confinées. Il a été montre que le confinement jouait un rôle important sur le comportement et les propriétés de ces deux types de poutres.

Une rupture par cisaillement pourrait être obtenue en augmentant la tension de confinement aux extrémités. Les poutres de béton confinées aux extrémités sont plus solides et résistantes que les poutres de béton courantes. Ceci est traduit par l'augmentation de la charge maximale et de l'énergie de rupture. Cependant, ces poutres sont moins sensibles au taux de pression que les poutres de béton non confinées. Ceci est explique par le changement de mode de rupture, de flexion à cisaillement. L'utilisation du confinement aux extrémités apparaît être une méthode prometteuse pour l'étude du cisaillement dans le béton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ü0(t):

acceleration at time t (m/s2)

ü p0 :

acceleration at the centre of the plate

g :

gravitational acceleration (9.81 m/s2)

U(t) :

output from the accelerometer (Volts)

A f :

amplification factor provided by manufacturer=1000

m h :

hammer mass

P t (t):

measured impact load from the tup load cell

P b (t):

true load

u o :

mid-plate displacement

ρ:

density of concrete

A :

cross-sectional area of the beam

l :

clear span length

l h :

overhanging length of the beam (25 mm)

m b :

mass of the broken out piece of concrete, and

τ:

shear stress

P :

peak bending load (N)

b and d :

width and depth of beam (mm)

θ:

angle of the shear failure plane (use 45° in all cases)

G:

shear modulus

References

  1. ‘Instrumented Impact Testing’, A Symposium presented at the 76th Annual Meeting, ASTM STP 563, 1973.

  2. ‘Instrumented Impact Testing of Plastics and Composite Materials’, A Symposium sponsored by ASTM Committee D-20 on Plastics, ASTM STP 936, 1985.

  3. Banthia, N., ‘Impact resistance of concrete’, PhD Thesis, University of British Columbia, 1987.

  4. Abrams, D.A., ‘Effect of rate of application load on the compressive strength of concrete’, Proceedings, ASTM 17, Part 2, 1917 146–165.

  5. Watstien, D., ‘Effect of straining rate on compressive strength and elastic properties of concrete’,Journal of American Concrete Institute 49(8) (1953) 729–756.

    Google Scholar 

  6. Green, H., ‘Impact strength of concrete’, Proceedings of the Institution of Civil Engineers28 (1964) 383–396.

    Google Scholar 

  7. Reinhardt, H.W., ‘Strain rate effects on the tensile strength of concrete as predicted by thermodynamic and fracture mechanics models’, in ‘Cement-Based Composites: Strain Rate Effects on Fracture’, Materials Research Society Symposia Proceedings vol.64 (1986).

  8. Zielinski, A.J. and Reinhardt, H.W., ‘Stress-strain behaviour of concrete and mortar at high rates of tensile loading’,Cement and Concrete Research 12 (1982) 309–319.

    Article  Google Scholar 

  9. Goparlaratnam, V.S. and Shah, S.P., ‘Properties of steel fiber reinforced concrete subjected to impact loading’,ACI Journal 83(1) (1986) 117–126.

    Google Scholar 

  10. Zielinski, A.J., ‘Model for tensile fracture of concrete at high rates of loading’,Cement and Concrete Research 14 (1984).

  11. Shah, S., ‘Concrete and fibers reinforced concrete subjected to impact loading’, in ‘Cement-Based Composites: Strain Rate Effects on Fracture’, Materials Research Society Symposia Proceedings Vol.64 (1986).

  12. van Mier, J.G.M., ‘Fracture of concrete under complex stress,’Heron 31(3) (1986) 1–90.

    Google Scholar 

  13. Sukontasukkul, P., Mindess, S., Banthia, N. and Mikami, T., ‘Fracture of laterally confined fibre reinforced concrete under impact loading’, in ‘Concrete under Severe Conditions: Environment and Loading’, 3rd International Conference on (CONSEC 01), Vancouver, Canada, (June 2001), 747–753.

  14. Mindess, S. and Diamond, S., ‘The cracking and fracture of mortar’,Materials and Structures 15(86), (1982) 107–113.

    Google Scholar 

  15. Sukontasukkul, P. and Mindess, S., ‘The fracture of fibre reinforced concrete plates under impact loading’, Werkstoffe im Bauwesen: Theorie und Praxis—H.-W. Reinhardt zum 60. Geburtstag (Construction Materials: Theory and Application), Stuttgart, Germany, (November 1999) 199–200.

  16. Broek, D., ‘Elementary Engineering Fracture Mechanics—4th Edition’, (Kluwer Academic Publishers, 1986).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Prof. Sidney Mindess is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukontasukkul, P., Mindess, S. The shear fracture of concrete under impact loading using end confined beams. Mat. Struct. 36, 372–378 (2003). https://doi.org/10.1007/BF02481062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481062

Keywords

Navigation