Remarks on the non-identifiability of mixtures of distributions

  • Khalaf E. Ahmad
  • Essam K. Al-Hussaini


This note points out some observations regarding the non-identifiability of finite mixtures of beta and Pearson Type VI distributions.


Hull Convex Hull Beta Distribution Beta Function Borel Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Al-Hussaini, E. K. and Ahmad, K. E. (1981). On the identifiability of finite mixtures of distributions,IEEE Trans. Inf. Theory, IT-27, 664–668.MATHCrossRefGoogle Scholar
  2. [2]
    Blum, J. R. and Susarla, V. (1977). Estimation of a mixing distribution,Ann. Prob.,5, 201–209.MathSciNetGoogle Scholar
  3. [3]
    Bremner, J. M. (1978). Mixtures of beta distributions. Algorithm AS 123,Appl. Statist.,27, 104–109.MATHCrossRefGoogle Scholar
  4. [4]
    Robbins, H. (1964). The empirical Bayes approach to statistical decision problems,Ann. Math. Statist.,35, 1–20.MATHMathSciNetGoogle Scholar
  5. [5]
    Teicher, H. (1960). On the mixture of distributions,Ann. Math. Statist.,31, 55–73.MATHMathSciNetGoogle Scholar
  6. [6]
    Teicher, H. (1963). Identifiability of finite mixtures,Ann. Math. Statist.,34, 1265–1269.MATHMathSciNetGoogle Scholar
  7. [7]
    Tretter, Marietta J. and Walster, William J. (1975). Central and noncentral distributions of Wilks statistic in MANOVA as mixtures of incomplete beta functions,Ann. Statist.,3, 467–472.MATHMathSciNetGoogle Scholar
  8. [8]
    Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures,Ann. Math. Statist.,39, 209–214.MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1982

Authors and Affiliations

  • Khalaf E. Ahmad
    • 1
  • Essam K. Al-Hussaini
    • 1
  1. 1.University of AssiutAssiutEgypt

Personalised recommendations