Application of an adequate statistic to the invariant prediction region

  • Yoshikazu Takada


Multivariate Normal Distribution Adequate Statistic Prediction Region Lower Triangular Matrice Conditional Density Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Basu, D. (1955). On statistics independent of a complete sufficient statistics,Sankhyā,15, 377–380.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Epstein, B. and Sobel, M. (1954). Some theorems relevant to life testing from an exponential distribution,Ann. Math. Statist.,25, 373–381.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Fraser, D. A. S. (1968).The Structure of Inference, Wiley, New York.zbMATHGoogle Scholar
  4. [4]
    Giri, N. C. (1977).Multivariate Statistical Inference, Academic Press, New York.zbMATHGoogle Scholar
  5. [5]
    Hall, W. J., Wijsman, R. A. and Ghosh, J. K. (1965). The relationship between sufficiency and invariance with application in sequential analysis,Ann. Math. Statist.,36, 575–614.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Halmos, P. R. and Savage, L. J. (1949). Application of Radon-Nikodym theorem to the theory of sufficient statistics,Ann. Math. Statist.,20, 225–241.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Ishii, G. (1980). Best invariant prediction region based on an adequate statistic,Recent Development in Statistical Inference and the Data Analysis (ed. K. Matusita), North-Holland.Google Scholar
  8. [8]
    Lehmann, E. L. (1953).Testing Statistical Hypotheses, Wiley, New York.zbMATHGoogle Scholar
  9. [9]
    Likěs, J. (1974). Prediction ofsth ordered observation for the two-parameter exponential distribution,Technometrics,16, 241–244.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Skibinsky, M. (1967). Adequate subfields and sufficiency,Ann. Math. Statist.,38, 155–161.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Sugiura, M. and Morimoto, H. (1969). Factorization theorem for adequate σ-field,Sūgaku,21, 286–289 (in Japanese).Google Scholar
  12. [12]
    Takada, Y. (1979). The shortest invariant prediction interval from the largest observation from the exponential distribution,J. Japan Statist. Soc.,9, 87–91.MathSciNetGoogle Scholar
  13. [13]
    Takada, Y. (1981). Invariant prediction rules and an adequate statistic,Ann. Inst. Statist. Math.,33, A, 91–100.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Takeuchi, K. (1975).Statistical Prediction Theory, Baihūkan, Tokyō (in Japanese).Google Scholar
  15. [15]
    Takeuchi, K. and Akahira, M. (1975). Characterizations of prediction sufficiency (adequacy) in terms of risk function.Ann. Statist.,3, 1018–1024.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1982

Authors and Affiliations

  • Yoshikazu Takada
    • 1
  1. 1.Kumamoto UniversityKumamotoJapan

Personalised recommendations