The decomposition of the fisher information

  • Nobuo Inagaki


Probability Density Function Likelihood Function Fisher Information Fisher Information Matrix Conditional Probability Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barndorff-Nielsen, O. (1978).Information and Exponential Families, John Wiley & Sons, Chichester.MATHGoogle Scholar
  2. [2]
    Edwards, A. W. F. (1972).Likelihood, Cambridge University Press, Cambridge.MATHGoogle Scholar
  3. [3]
    Hájek, J. and Sidák, Z. (1967).Theory of Rank Tests, Academic Press, New York.MATHGoogle Scholar
  4. [4]
    Halmos, P. R. and Savage, L. J. (1949). Application of the Radon-Nikodym theorem to the theory of sufficient statistic,Ann. Math. Statist.,20, 225–241.MATHMathSciNetGoogle Scholar
  5. [5]
    LeCam, L. (1970). On the assumptions used to prove asymptotic normality of maximum likelihood estimates.Ann. Math. Statist,41, 802–828.MATHMathSciNetGoogle Scholar
  6. [6]
    Loève, M. (1978).Probability Theory I, II, 4th ed., Springer-Verlag, New York.Google Scholar
  7. [7]
    Shimizu, R. (1976).Central Limit Theorems (in Japanese), Kyoiku Shuppan, Tokyo.Google Scholar

Copyright information

© Kluwer Academic Publishers 1983

Authors and Affiliations

  • Nobuo Inagaki
    • 1
  1. 1.Osaka UniversityOsakaJapan

Personalised recommendations