An ordering relation of the blocking two-stage tandem queueing system to the reduced single server queueing system

  • Genji Yamazaki


Delay Time Service Time Arrival Process Single Server Service Discipline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Avi-Itzhak, B. and Yadin, M. (1965). A sequence of two servers with no intermediate queue,Management Sci.,11, 553–564.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bessler, S. and Veinott, A. F. (1966). Optimal policy a dynamic multiechelon inventory model,Naval Res. Logist. Quart.,13, 355–389.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Borovkov, A. A. (1970). Factorization identities and properties of the distribution of the supremum of sequential sums,Theory Prob. Appl.,15, 359–402.CrossRefGoogle Scholar
  4. [4]
    Brumelle, S. L. (1971). Some inequalities for parallel-server queues,Operat. Res.,19, 402–413.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Kawashima, T. (1975). Reverse ordering of services in tandem queues,Memoirs of the Defense Academy,15, 151–159.MathSciNetMATHGoogle Scholar
  6. [6]
    Miyazawa, M. (1976). Stochastic order relations amongGI/G/1 queues with a common traffic intensity,J. Operat. Res. Soc. Japan,19, 193–208.CrossRefGoogle Scholar
  7. [7]
    Sakasegawa, H. and Yamazaki, G. (1977). Inequalities and approximation formula for the mean delay time in tandem queueing systems,Ann. Inst. Statist. Math.,29, A, 445–466.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Stidham, S., Jr. (1970). On the optimality of single-server queuing systems,Operat. Res.,18, 708–732.CrossRefGoogle Scholar
  9. [9]
    Stoyan, H. and Stoyan, D. (1969). Monotonieeigenschaften der Kundewartezeiten im ModelGI/G/1,Zeit. angew. Math. Mech.,49, 729–734.CrossRefGoogle Scholar
  10. [10]
    Suzuki, T. (1964). On a tandem queue with blocking,J. Operat. Res. Soc. Japan,6, 137–157.MathSciNetGoogle Scholar
  11. [11]
    Tumura, Y. and Ishikawa, A. (1978). Numerical calculation of the tandem queueing systems.TRU Math.,14, 57–70.MathSciNetMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1981

Authors and Affiliations

  • Genji Yamazaki
    • 1
  1. 1.Kogakuin UniversityJapan

Personalised recommendations