Advertisement

Materials and Structures

, 36:553 | Cite as

Tensile behaviour in natural building stone: Serena sandstone

Article

Abstract

The tensile behavior of Serena sandstone is investigated by means of uni-axial tensile and bending tests. In order to obtain an overall characterisation of a quasi-brittle material, such as Serena sandstone, it is necessary to investigate the post-peak softening branch by adopting a stable control system. Test results on different size specimens are presented. Also analysed in this paper is the effect of the boundary conditions in a uni-axial tensile test by comparing free and fixed platens tests. A laser interferometry technique (ESPI) was adopted to investigate the strain field and crack propagation in the material.

A notable outcome of the research is the location of crack penetration before the peak load, that in the case of the bending test is almost constant in specimens of different size.

Keywords

Sandstone Peak Load Crack Opening Displacement Nominal Stress Fracture Process Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

σNt

nominal stress in uni-axial tensile test

σNb

nominal stress in four-point bending test

Résumé

Le comportement en traction du Grès de Serena est étudié ici au moyen d'essais de traction et de flexion mono-dimensionnels. Da façon à caractériser de manière générale un matériau quasifragile, tel que le grès de Serena, il est nécessaire d'étudier le domaine “plastique”, après le point de charge maximale en adoptant un système de pilotage stable. Les résultats des essais effectués sur des échantillons de taille différente sont présentés. Le présent article documente également l'effet des conditions aux limites dans un essai de traction pure, en comparant des essais avec platines libre et fixe. Une technique d'interférométrie LASER (ESPI) a été adoptée pour étudier le champ de contraintes et la propagation des fissures dans le matériau. Un résultat remarquable de cette recherche est la mise en évidence d'une amorce de fissure avant l'application de la charge maximale, que l'on peut constamment observer sur des échantillons de taille différente, lors des essais de flexion.

References

  1. [1]
    Goodman, R.E., ‘Introduction to rock mechanics’, (John Wiley and Sons, New York, 1989).Google Scholar
  2. [2]
    Biolzi, L. and Labuz, J.F., ‘Size effects in fracture of quasi-brittle materials’, in ‘Non linear fracture and damage’, (WIT press, London, 2001) 201–243.Google Scholar
  3. [3]
    Cedolin, L., Dei Poli, S. and Iori, I., ‘Tensile behavior of concrete,’J. Eng. Mech ASCE 113 (3) (1987) 431–449.CrossRefGoogle Scholar
  4. [4]
    Labuz, J.F. and Biolzi, L., ‘Characteristic strength of quasi-brittle materials’,Int J. Solids and Struct 35 (31–32) (1998) 4191–4203.CrossRefGoogle Scholar
  5. [5]
    Cattaneo, S. and Rosati, G.P., ‘Effect of different boundary conditions in direct tensile tests: Experimental results’,Mag. of Conc. Res. 51 (5) (1999) 365–374.CrossRefGoogle Scholar
  6. [6]
    Vervuurt, A., Schlangen, E. and van Mier, J.G.M., ‘Tensile cracking in concrete and sandstone: Part 2—Effect of boundary rotation’,Mater. and Struct. 29 (188) (1996) 87–96.Google Scholar
  7. [7]
    Binda, L., Facchini, M., Mirabella Roberti, G. and Tiraboschi, C., ‘Electronic speckle interferometry in masonty testing’,Const. and Build. Mat. 12 (5) (1998) 269–281.CrossRefGoogle Scholar
  8. [8]
    Calvetti, F., Cardani, G. and Meda, A., ‘Mechanical characterization of natural building stones: observation on the fracture process zone by ESPI’ in ‘The EOS/SPIE International Symposia on Industrial Lasers and Inspection’, Munich (June 1999) 64–71.Google Scholar
  9. [9]
    Heilmann, H.G., Hilsdorf, H. and Finsterwalder, K., ‘Strength and deformation of concrete subjected to uniaxial tension’,Deutscher Ausschuss für Stahlbeton, Heft 203, Berlin (1969) (In German).Google Scholar
  10. [10]
    Rosati, G., ‘Tensile residual strength of cracked concrete and its implications in bond problems’, Ph.D. Thesis, Politecnico di Milano (1989) (In Italian).Google Scholar
  11. [11]
    Cardani, G. and Meda, A., ‘Flexural strength and notch sensitivity in natural building stones: Carrara marble and Dionysos marble’,Const. and Build. Mar. 13 (7) (1999) 393–403.CrossRefGoogle Scholar
  12. [12]
    van Mier, J.G.M., ‘Fracture processes of concrete’, (CRC Press, Boca Raton Florida, 1997).Google Scholar
  13. [13]
    Bažant, Z.P., ‘Sealing laws in mechanics of failute’,J Eng Mech ASCE 119 (9) (1993) 1828–1844.CrossRefGoogle Scholar
  14. [14]
    van Mier, J.G.M., ‘Fracture of concrete: the interaction between modelling and experimentation’, in International Conference on ‘Concrete under Severe Conditions’ (CONSEC '01), Vancouver, June 2001, 1626–1639.Google Scholar

Copyright information

© RILEM 2003

Authors and Affiliations

  • A. Meda
    • 1
  1. 1.Civil Engineering DepartmentUniversità di BresciaBresciaItaly

Personalised recommendations