Skip to main content
Log in

Residual fracture energy of high-performance and normal concrete subject to high temperatures

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Test data on the residual fracture energy of two significantly different concrete types are presented. About 80 beams of high performance basalt concrete and ordinary gravel concrete have been tested in accordance with the RILEM work of fracture method. The beams are heated at 1°C per minute up to a certain maximum temperature and kept at this temperature for 8 hours before cooling them back to room temperature and testing in three-point bending.

The tests show that the two concretes behave almost identifical when the fracture energyG F is considered as a function of maximum temperature. It is found that the damage introduced by a maximum temperature of 300 to 400°C increases the fracture energy by 50% compared with the reference tests at room temperature. A more tortuous crack surface is one plausible explanation for the significant increase inG F.

The article also presents temperature and weight loss recordings from the heating scenarios and finally, the characteristic length and the cohesive tensile softening curve are shown to depend on the maximum temperature. Basically it is demonstrated that the temperature exposure makes the concrete significantly more ductile.

Résumé

Des données sur l'énergie résiduelle de rupture de deux bétons différents sont présentées. Environ 80 poutres de béton à base de basalte de très haute performance et de béton à base de gravier ordinaire ont été examinées conformément au travaux de la RILEM sur l'énergie de rupture. Les poutres sont chauffées à 1°C par minute jusqu'à une température maximale, puis maintenues à cette température pendant 8 heures avant d'être refroidies de nouveau à la température ambiante. Les poutres sont ensuite testées en flexion (système de flexion en trois points).

Les essais prouvent que les deux bétons se comportent d'une manière presque identique quandG F est considéré comme une fonction de la température maximale. On peut aussi constater que le dommage occasionné par une température maximale de 300 à 400°C augmente l'énergie de rupture de 50% par comparaison aux essais de référence réalisés à la température ambiante. Une surface de rupture plus tortueuse semble être une explication plausible pour l'augmentation significative deG F.

L'article présente également les évolutions de la température et de la perte de poids pour les scénarios de chauffage utilisés. En conclusion, cette étude montre que la longueur caractéristique et la courbe de post pic dépendent de la température maximale. Fondamentalement cela démontre que l'exposition à la température rend le béton sensiblement plus ductile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neville, A.M., ‘Properties of Concrete’, 4th Edn. (Longman Group Ltd., Harlow, England, 1995).

    Google Scholar 

  2. Schneider, U., ‘Concrete at high temperatures—A general review’,Fire Safety J. 13 (1988) 55–68.

    Article  Google Scholar 

  3. Bažant, Z.P. and Kaplan, M.F., ‘Concrete at High Temperatures’, (Longman Group Ltd, Harlow, England, 1996).

    Google Scholar 

  4. Bažant, Z.P. and Prat, P.C., ‘Effect of temperature and humidity on fracture energy of concrete’,ACI Mat. J. 85 (4) (1988) 262–271.

    Google Scholar 

  5. Baker, G., ‘The effect of exposure to elevated temperatures on the fracture energy of plain concrete’,Mater. Struct. RILEM 29 (1996) 383–388.

    Google Scholar 

  6. Felicetti, R. and Gambarova, P.G., ‘On the residual tensile properties of high performance siliceous concrete exposed to high temperature’, in Proc. Int. Workshop in honour of Z.P. Bažant's 60th Anniversary (March 1998) 167–186.

  7. Zhang, B., Biéanić, N., Pearce, C.J. and Balabanić, G., ‘Residual fracture properties of normal-and high-strength concreie subject to elevated temperatures’,Mag. Concre. Res. 52 (2) (2000) 123–136.

    Google Scholar 

  8. Zhang, B. and Biéanić, N., ‘Fracture energy of high performance concrete at temperatures up to 450°C, in (de Borst, R. Mazars, J. Pijaudier-Cabot, G. and van Mier, J.G.M., Eds.), FraMCoS-4 Proc. 4th Int. Conf. Fracture Mechanics of Concrete Structures (Balkema, The Netherlands, 2001) 461–468.

    Google Scholar 

  9. RILEM TC 129-MHT ‘Part 7: Transient creep for service and accident conditions’,Mater. Struct. RILEM 31 (1998) 290–295.

    Google Scholar 

  10. RILEM TC 50-FMC, ‘Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams’,Mater. Struct. RILEM 18 (106) (1985) 285–290.

    Google Scholar 

  11. Khoury, G.A., Sullivan, P.J.E. and Grainger, B.N., ‘Radial temperature distributions within solid concrete cylinders under transient thermal states’,Mag. Concr. Res. 36 (128) (1984) 146–156.

    Google Scholar 

  12. Khoury G.A., Grainger, B.N. and Sullivan, P.J.E., ‘Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents’,Mag. Concr. Res. 37 (132) (1985) 131–144.

    Article  Google Scholar 

  13. Maier, R., ‘Fracture energy of concrete at high temperature’, Final year report (University of Glasgow, Dept. Civ. Engrg, 2001)

  14. Hillerborg, A., Modeer, M. and Petersson, P.-E., ‘Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements’,Cem. Concr. Res. 6 (6) (1976) 773–782.

    Article  Google Scholar 

  15. Gopalaratnam, V.S. and Shah, S.P., ‘Soflening response of plain concrete in direct tension’,ACI Journ 82 (3) (1985) 310–323.

    Google Scholar 

  16. Petersson, P.-E., ‘Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials’, TVBM-1006 (Lund Institute of Technology, Lund Sweden, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, C.V., Biéanić, N. Residual fracture energy of high-performance and normal concrete subject to high temperatures. Mat. Struct. 36, 515–521 (2003). https://doi.org/10.1007/BF02480828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480828

Keywords

Navigation