Skip to main content
Log in

Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A multiscale model for shrinkage of cement paste and concrete that links properties at the nanometer, micrometer and millimeter level is proposed. Each parameter of the model at a particular scale level has fundamental physical meaning. The model is used to determine values of shrinkage, bulk modulus, and volume fraction of the constituent phases, and these values are then used to model shrinkage of concrete. Agreement with experimental results is satisfactory and new insight into properties of paste is gained at the micron level.

Résumé

Un modèle multi-échelle pour le retrait de la pâte de ciment et du béton est proposé, qui lie les propriétés aux niveaux nanométrique, micrométrique et millimétrique. Chaque paramètre du modèle à un niveau donné de l'échelle possède une signification physique fondamentale. Le modèle est utilisé pour déterminer les valuers de retrait, de module de compressibilité et de fraction volumique des phases constituantes, et ces valeurs sont utilisées pour modéliser le retrait du béton. La comparaison des résultats expérimentaux est satisfaisante, et un nouvel aperçu sur les propriétés de la pâte est acquis au niveau micrométrique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jennings, H.M., and Xi, Y., ‘Microstructurally based mechanisms for modeling shrinkage of cement paste at multiple levels’, Proc. of the 5th Int, RILEM Symp., ed. by Zdenek P. Bažant and Ignacio Carol (E&FN Spon., London) (22) (1993) 85–102.

    Google Scholar 

  2. Jennings, H.M., Xi, Y., Bažant, Z.P., Yang, M., and Neubauer, C.M., ‘Modelling and materials science of cement-based materials, Part II: Recent developments’, Proc. of NATO/RILEM workshop on the Modeling of Microstructure and its Potential for Studing Transport Properties and Durability, ed. by H.M. Jennings, J. Kropp, and K. Scrivener (Kluwer Academic Publishers, Dordrecht) 1995, 187–225.

    Google Scholar 

  3. Xi, Y., Bergstrom, T.B. and Jennings, H.M., ‘Image intensity matching technique: application to the environmental scanning electron microscope’,Computational Materials Science 2 (1994) 249–260.

    Article  Google Scholar 

  4. Neubauer, C.M., Bergstrom, T.B., Sujata, K., Xi, Y. and Jennings, H.M., ‘Drying shrinkage of cement paste as measured in an ESEM and comparison to microstructural models’,J. Mater. Res. Soc., submitted.

  5. Torquato, S. and Stell, G., ‘Microstructure of two-phase random media. I. The N-point probability functions’,J. of Chem. Phys. 77 (4) (1982) 2071–2077.

    Article  MathSciNet  Google Scholar 

  6. Torquato, S., ‘Microstructure characterization and bulk properties of disordered two-phase media’,J. of Statistical Physics 45 (5/6) (1986) 843–873.

    Article  MathSciNet  Google Scholar 

  7. Allais, L., Bretheau, T. and Zaoui, A., ‘Experimental and theoretical approach of the influence of morphology on a two-phase material mechanical behavior’, in: ‘Macroscopic Behavior of Heterogeneous Materials from the Microstructure’, Proc. of the Winter Annual Meeting of ASME, Anaheim, California, Nov. 8–13, Ed. Torquato, S. and Krajcinovic, D. (1992) 13–25.

  8. Torquato, S., ‘Connection between morphology and effective properties of heterogeneous materials’,Ibid., in ‘Macroscopic, Behavior of Heterogeneous Materials from the Microstructure’, Proc. of the Winter Annual Meeting of ASME, Anaheim, California, Nov. 8–13, Ed. Torquato, S. and Krajcinovic, D. (1992) 13–25.

  9. Wang, B., ‘A general theory on media with randomly distributed inclusions: Part I—The average field behaviors’,J. of Applied Mechanics, 57, Transaction of the ASME, Dec. 1990, 857–862.

    MATH  Google Scholar 

  10. Xi, Y., ‘Simulation of multiphase spatial distributions with application to fracture of concrete’, Proc. of Europe-U.S. Workshop on Fracture and Damage in Quasibrittle Structures: Experiment, Modeling and Computer Analysis, Prague, Sept. 1994, 21–23, 501–510.

  11. Lu, B., and Torquato, S., ‘Lineal-path function for random heterogeneous materials’,Physical Review, A,45 (2) (1992) 922–929.

    Article  Google Scholar 

  12. Lu, B. and Torquato, S., ‘Lineal-path function for random heterogeneous materials. II. Effect of polydispersivity’,Physical Review, A,45 (10) (1992) 7292–7301.

    Article  Google Scholar 

  13. Hashin, Z., ‘The elastic moduli of heterogeneous materials’,J. of Applied Mechanics, Transaction of the ASME, March 1962, 143–150.

  14. Kroner, E., and Koch, H., ‘Effective properties of disordered materials’,SM Archives 1 (1976) 183–238.

    Google Scholar 

  15. Baker, A.L.L., ‘An analysis of deformation and failure characteristics of concrese’,Magazine of Concrete Research 11 (33) (1959) 119–128.

    Google Scholar 

  16. Hirsch, T.J., ‘Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate’,J. of ACI 59 (3) (1962) 427–451.

    Google Scholar 

  17. Dougill, J.W., Ishai, O., Pauw, A., Meyers, B.L., Discussion of a paper by Hirsch, T.J., ‘Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate’,J. of ACI 59 (9) (1962) 1363–1374.

    Google Scholar 

  18. Rice, R.W., ‘Relation of tensile strength-porosity effects in ceramics to porosity dependence of Young's modulus and fracture energy, porosity character and grain size’,Materials Science and Engineering A 112 (1989) 215–224.

    Article  Google Scholar 

  19. Sendeckyj, G.P., ‘Longitudinal shear deformation of composites II. Stress distribution’,J. Composite Materials,5 (1971) 88–93.

    Article  Google Scholar 

  20. Sendeckyj, G.P., ‘Longitudinal shear deformation of composites—Effective shear modulus’,J. Composite Materials 4 (1970) 500–512.

    Google Scholar 

  21. Chen, C.H., and Cheng, S., ‘Mechanical properties of fiber reinforced composites’,J. Composite Materials 1 (1967) 30–41.

    Google Scholar 

  22. Chen, C.H., ‘Fiber-reinforced composites under longitudinal shear loading’,J. of Applied Mechanics, Transaction of ASME (March 1970) 198–201.

  23. Adams, D.F. and Doner, D.R., ‘Longitudinal shear loading of a unidirectional composite’,J. Composite Materials 1 (1967) 4–17.

    Google Scholar 

  24. Christensen, R.M., ‘Mechanics of Composite Materials’ (Wiley-Interscience, New York, 1979).

    MATH  Google Scholar 

  25. Christensen, R.M., and Lo, K.H., ‘Solutions for effective shear properties in three phase sphere and cylinder models’,J. Mech. Phys. Solids 27 (1979) 315–330.

    Article  MATH  Google Scholar 

  26. Jennings, H.M. and Tennis, P.D., ‘A model for the developing microstructure in Portland cement pastes’,J. of Amer. Ceram. Soc. 77 (12) (1994) 3161–72. Correction published inIbid. 78 (19) (1995) 2575.

    Article  Google Scholar 

  27. Herve, E., and Zaoui, A., ‘Modeling the effective behavior of nonlinear matrix-inclusion composites’,Eur. J. Mech., A/Solids 9 (6) (1990) 505–515.

    MATH  Google Scholar 

  28. Diamond, S. and Bonen, D., ‘Microstructure of hardened cement paste—A new interpretation’,J. Am. Ceram. Soc. 76 (12) (1993) 2993–99.

    Article  Google Scholar 

  29. Taylor, H.F.W., ‘A method for predicting alkali ion concentration in cement pore solutions’,Adv. Cem. Res. 1 (1) (1987) 5.

    Google Scholar 

  30. Bažant, Z.P. and Xi, Y., ‘Continuous retardation spectrum for solidification theory of concrete creep’,J. of Engrg. Mech., ASCE 121 (2) (1995) 281–288.

    Article  Google Scholar 

  31. Anson, M. and Newman, E., ‘The effect of mix proportions and method of testing on Poisson's ratio for mortars and concrete’,Mag. Concr. Res. 18 (56) (1966) 115–129.

    Google Scholar 

  32. Walpole, L.J., ‘On bounds for the overall elastic moduli of inhomogeneous systems, I’,Mech. Phys. Solids 14 (1966) 151–162.

    Article  MATH  Google Scholar 

  33. Jennings, H.M. and Xi, Y., ‘Cement-aggregate compatibility and structure property relationship including modeling’, Proc. of 9th Int. Cong. on the Chemistry of Cement, New Delhi, India, Vol. 1 (1992) 663–691.

  34. Xi, Y. and Jennings, H.M., ‘Relationships between microstructure and creep and shrinkage of cement paste’, in ‘Materials Science of Concrete III’, Ed. Skalny, J., (The Amer. Cer. Soc., Westerville, OH, 1992) 37–69.

    Google Scholar 

  35. Sabri, S. and Illston, J.M., ‘Isothermal drying shrinkage and wetting swelling of hardened cement paste’, in ‘Fundamental Research on Creep and Shrinkage of Concrete’, Ed. F.H. Wittmann (Martinus Nijhoff, The Hague, 1982) 63–72.

    Google Scholar 

  36. Ferraris, C.F. and Wittmann, F.H., ‘Shrinkage mechanisms of hardened cement paste’,Cem. Concr. Res. 17 (1987) 453–464.

    Article  Google Scholar 

  37. Bažant, Z.P. and Xi, Y., ‘Drying creep of concrete: Constitutive model and new experiments separating its mechanisms’,Mater. Struct. 27 (1994) 3–14.

    Article  Google Scholar 

  38. Pickett, G., ‘Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage’,Journal of ACI 27 (5) (1956) 581–590.

    Google Scholar 

  39. Fulton, F.S., ‘A co-ordinated approach to the shrinkage testing of concretes and mortars’,Magazine of Concrete Research 13 (39) (1961) 133–140.

    Google Scholar 

  40. Hansen, T.C. and Nielsen, K.E.C., ‘Influence of aggregate properties on concrete shrinkage’,Journal of ACI 62 (7) (1965) 783–793.

    Google Scholar 

  41. Christian, B.H. and Patten, B.J.F., ‘Multiple aspocts of concrete drying shrinkage’,Civil Engineering Transactions (Institution of Engineers, Australia, 1968) 229–236.

    Google Scholar 

  42. Hobbs, D.W., ‘Bulk modulus, shrinkage, thermal expansion of a two-phase material’,Nature (222) (1969) 849–851.

  43. Hobbs, D.W., ‘Influence of aggregate restraint on the shrinkage of concrete’,Journal of ACI (1974) 445–450.

  44. Bažant, Z.P., Panula, L. Kim, J.K. and Xi, Y., ‘Improved prediction model of time-dependent deformations of concrete: Part VI—Simplified code-type formulation’,Mater. Struct. 25 (1992) 219–223.

    Article  Google Scholar 

  45. Hansen, W., ‘Constitutive model for predicting ultimate drying shrinkage of concrete’,J. Am. Ceram. Soc. 70 (5) (1987) 329–332.

    Article  Google Scholar 

  46. Hansen, W. and Almudaiheem, J.A., ‘Ultimate drying shrinkage of concrete—Influence of major parameters’,ACI Materials Journal (May–June 1987) 217–223.

  47. Almudaiheem, J.A., ‘An improved model to predict the ultimate drying shrinkage of concrete’,Magazine of Concrete Research 44 (159) (1992) 81–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Dr. H. M. Jennings is a RILEM Senior Member, He is co-chairman of Technical Committee 123-MME on Microstructural Models and Expert systems for cementitious materials and a member of TC 159-ETC on Engineering of the interfacial Transition zone in Cementitious composites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, Y., Jennings, H.M. Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory. Mat. Struct. 30, 329–339 (1997). https://doi.org/10.1007/BF02480683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480683

Keywords

Navigation