Skip to main content
Log in

Air cooling of concrete by means of embedded cooling pipes-Part I: Laboratory tests of heat transfer coefficients

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Embedded cooling pipes can be used to reduce the temperature rise in massive structures as a measure against thermal cracking. When air is used as a cooling medium, relatively large diameters with profiles causing friction losses along the pipe are preferred. In this paper, heat transfer coefficients for two different types of cooling pipes have been determined for different pipe flows in combination with various temperature levels. This paper relates to the first part of the investigation dealing with the laboratory tests of heat transfer coefficients. The second part, dealing with application in design, is presented in “Air cooling of concrete by means of embedded cooling pipes-Part II: Applications in design” [1].

Résumé

Afin de prévenir la fissuration thermique, des tuyaux de refroidissement incorporés peuvent servir à réduire la montée de la température dans des constructions massives. Si l’on utilise l’air en tant que moyen de refroidissement, il est préférable d’incorporer des tuyaux de diamètre relativement large dont les profils causent des pertes par friction. Dans cet article, on détermine les coefficients de transfert thermique pour deux types de tuyaux, pour des flux différents dans les tuyaux combinés avec des niveaux différents de température. Cet article décrit la première partie d’une étude expérimentale et traite des essais en laboratoire des coefficients de transfert thermique. La deuxième partie, qui traite de l’application des résultats dans la préparation des projets, sera présentée en «Air cooling of concrete by means of embedded cooling pipes-Part II: Applications in design» [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T a :

ambient temperature, (°C)

T w :

pipe-wall temperature, (°C)

T m, i ,T m,o :

in- and outlet bulk temperature of the fluid, (°C)

Ω:

perimeter of the cooling pipe, (m)

L :

distance between in- and outlet, (m)

m :

rate of mass flow through the pipe, (kg/s)

c p :

specific heat, (J/kg °C)

h :

average convection heat transfer coefficient, (W/m2°C)

x :

co-ordinate along the length axis of the pipe, (m)

r :

radial co-ordinate, (m)

R, A :

radius of the pipe, (m) and pipe area, (m2)

u(r,x), T(r,x) :

velocity profile, (m/s), and temperature profile, (°C)

u m :

the mean velocity, (m/s)

θ1, θ2, φ:

fitting parameters obtained from the measured values of temperature in the pipe, (-)

ψ, ξ:

fitting parameters obtained from the measured values of velocity in the pipe, (-)

Re, Pr :

Reynold’s number and Prandtl’s number, (-)

a, b andc :

fitting parameters, (-)

r :

density of the fluid, (kg/m3)

References

  1. Groth, P. and Hedlund, H., ‘Air cooling of concrete by means of embedded cooling pipes.—Part Il Application in Design’,Mater. Struct. 31 (210) (1998).

  2. Emborg, M., ‘Thermal Stresses in Concrete Structures at Early Ages’, Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis 1989:73D (1989).

  3. Van Breugel, K., ‘Simulation of Hydration and Formation of Structure in Hardening Cement-based Materials’, Ph.D. dissertation, Delft (1991).

  4. Acker, P., Foucrier, C., Malier, Y., ‘Temperature-related mechanical effects in concrete elements and optimisation of the manufacture process’, ACI Symposium on Properties of Concrete at Early Ages, Chicago (1985) 33–47.

  5. Springenschmid, R., Breitenbücher, R., Mangold, M., ‘Development of the cracking frame and the temperature-stress testing machine’, in ‘Thermal Cracking in Concrete at Early Ages’, (Edited by R. Springenschmid), International RILEM Symposium, 10 October, Munich (1994) 137–144.

  6. Jonasson, J-E., ‘Modelling of Temperature, Moisture and Stresses in Young Concrete’, Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis 1994:153D (1994) 225 pp.

  7. Westman, G., ‘Thermal Cracking in High Performance Concrete., Viscoelastic Models and Laboratory Tests’.Ibid., Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis Licentiate Thesis 1995:27L (1995) 120 pp.

  8. Hedlund, H., ‘Materialparametrar for betong inehållande ultrafint cement’, (Material parameters for concrete containing ultrafine cement. In Swedish),Ibid. Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis Internal Report 96:03 (1996) 26 pp.

  9. Ekerfors, K., ‘Mognadsutveckling och värmeutveckling i ung betong’, (Maturity growth and heat development in concrete at early ages. In Swedish.)Ibid., Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis Licentiate Thesis 1995:34L (1989) 136 pp.

  10. Jonasson, J-E., Ronin, V., ‘Concreting at low temperatures. Improved methods of using inorganic modifiers for high strength silica fume concrete’,Ibid., Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis Internal Report 93:02 (1993) 28 pp.

  11. Bernander, S., ‘Kylning av härdnande betong med kylslingor’, (Cooling of hardening concrete by means of embedded cooling system. In Swedish with English summary) Nordisk betong No. 2, Stockholm 1973, 10 pp.

  12. Hübinette, K-J., Westman, G., ‘Temperatursprickor p.g.a ojämn temperatur vid hydratation. Fältmätningar och teoretiska studier av Igelsta brons enkelspårspelare’, (Thermal cracks due to temperature gradients caused by hydration. Field measurements and theoretical studies of the massive columns of Igelstabridge. In Swedish with English summary), Division of Structural Engineering, Luleå University of Technology, Master of Science Thesis 1992:012E, (1992) 48 pp.

  13. Larson, M., and Groth, P., ‘Reduction of thermal stresses in concrete structures with air cooling’, Proceedings of a Nordic Concrete Research Meeting, NBFM 93, Göteborg, August 17–19, 1993 (Edited by the Technical Committee of Nordic Concrete Research Meeting) (1993) 230–232.

  14. Hedlund, H., Groth, P., Jonasson, J-E., ‘Reduction of thermal stresses in structures with air-cooling’, in ‘Thermal Cracking in Concrete at Early Ages’ (Edited by R. Springenschmidt), International RILEM Symposium, 10 October, Munich (1994) 433–440.

  15. Larson, M., ‘Reduktion av temperaturspänningar i betongkonstruktioner med hjälp av luftkylning’, (Reduction of thermal stresses in concrete structures by air-cooling. In Swedish.) Division of Structural Engineering, Luleå University of Technology, Technical Report 1993:10T (1993) 26 pp.

  16. Groth, P., Hedlund, H., ‘Luftkylning av betong med ingjutna kylrör’, (Air-cooling of concrete with embedded cooling pipes. In Swedish.),Ibid., Division of Structural Engineering, Luleå University of Technical Report 1996:07T (1996) 69 pp.

  17. Emborg, M., Hedlund, H., Groth, P., ‘Temperatursprickor p.g.a hydratationen för några vanlig typfall’, (Thermal cracks due to hydration for some typical structures. In Swedish.),Ibid., Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis Technical Report 1994:08T (1994) 79 pp.

  18. Incropera, F.P., DeWitt D.P., ‘Fundamentals of Heat and Mass Transfer, 4th ed. (Wiley Inc, New York, 1996) 886 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedlund, H., Groth, P. Air cooling of concrete by means of embedded cooling pipes-Part I: Laboratory tests of heat transfer coefficients. Mat. Struct. 31, 329–334 (1998). https://doi.org/10.1007/BF02480675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480675

Keywords

Navigation