Skip to main content
Log in

Developing unified rheological curves for polymermodified asphalts—Part I. Theoretical analysis

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Rheological data for polymer-modified asphalts are obtained by measurements on the dynamic shear rheometer (DSR) and expressed in terms of |G*|, G″ and |G*|/ Sin δ versus frequency curves. In each case, the material's volumetric-flow rate MVR (in cc/10 minutes) through a predefined die under conditions of constant temperature and stress can be obtained for the polymer-modified asphalts using a simple flow measurement device (FMD). A theoretical relationship between the fundamental rheological properties got from the DSR and the MVR obtained from the FMD shows that unified curves of viscoelastic properties of polymermodified asphalts can be obtained within a determined temperature range.

Résumé

Les données rhéologiques pour les bitumes modifiés par des polymères sont obtenues par mesure sur Rhéomètre à Cisaillement Dynamique (DSR) et exprimées en terme de courbes |G*|, G″ et |G*|/Sin δ en fonction de la fréquence. Pour chaque cas, le débit volumétrique du matériau MVR (en cc/10 minutes), à travers un capillaire prédéfini, dans de conditions de température et de contrainte constantes, peut être obtenu pour les bitumes modifiés par des polymères en utilisant un système simple de mesure du débit (FMD). Une relation théorique entre les propriétés rhéologiques fondamentales obtenus d'une part à l'aide du DSR et d'autre part à partir du MVR montre que les courbes unifiées des propriétés viscoélastiques des bitumes modifiés par des polymères peuvent être obtenues dans un domaine de température déteminé.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isacsson, U. and Lu, X., ‘Testing and appraisal of polymer modified road bitumens-State-of-the art,’Mater. Struct. 28 (1995) 139–159.

    Article  Google Scholar 

  2. Lewandowski, L. H., ‘Polymer modification of paving asphalt binders,’Rubber Chem. Tech. 67 (1994) 447–480.

    Google Scholar 

  3. Terrel, R. L. and Epps, J. A. ‘Asphalt modifiers—A users manual for additives and modifiers in hot-mix asphalt’, National Asphalt Pavement Association (1988).

  4. Ait-Kadi, A., Brahimi, B. and Bousmina, M., ‘Polymer blends for enhanced asphalt binders,’Polym. Engg. Sci. 36 (1996) 1724–1733.

    Article  Google Scholar 

  5. Bouldin, M., Collins, J. M. and Berker, A., ‘Rheology and microstructure of polymer/asphalt blends,’ ACS Rubber Division, Las Vegas, NV (May 29–June 1, 1990).

    Google Scholar 

  6. Breuer, J. U. ‘Elastic recovery of polymer modified binder’, in Proceedings of RILEM Residential Seminar, Dubrovnik, Yogoslavia (September 1988) 83.

  7. De Ferrariis, L., Gallino, G., Italia, P., Mancini, G. and Rebesco, E., ‘Rheological characteristics of polymer modified bitumens’, in Proceedings of 5th Eurobitume Congress, Stockholm, IA (June 1993) 133–137.

  8. Denning, J. H. and Carswell, J., ‘Improvements in rolled asphalt surfacings by the addition of organic polymer’, TRRL Laboratory Report 989, Transport and Road Research Laboratory, Crowthorne, Berkshire (1981).

  9. Dickinson, E. J., ‘Improvements of the deformation behaviour of paving bitumens by addition of block co-polymers’, Australian Road Research Board, Internal Report, AIR 063-1 (1976).

  10. Dickinson, E. J., ‘Assessment of the deformation and flow properties of polymer-modified bituments,’Australian Road Research 11 (1981) 11–18.

    Google Scholar 

  11. Gahvari, F., ‘Modeling of the linear viscoelastic response of polymer modified asphalt binders at intermediate and high temperatures,’ PhD Thesis, Dept. of Civil Engg., Virginia Polytechnic Inst. and State Univ., Blacksburg, VA. (1996).

    Google Scholar 

  12. Gahvari, P., ‘Effects of thermoplastic block copolymers on rheology of asphalt,’J. Mat. in Civil Engg. 9 (1997) 111–116.

    Article  Google Scholar 

  13. Goodrich, J. L., ‘Asphalt and polymer modified asphalt properties related to the performance of asphalt concrefe mixes,’Proc. AAPT 57 (1988) 116–175.

    Google Scholar 

  14. Jørgensen, T., ‘Creep testing with the controlled stress rheometer—A versatile tool for measuring elastic recovery of polymer modified bitumens’, in Proceedings of RILEM Residential Seminar, Dubrovnik, Yugoslavia (September 1998) 93–95.

  15. Jovanovic, J. A., Djonlagic, J. and Dunjic, B., ‘A rheological study of behaviour of polymer-bitumen blends’, in Proceedings of 5th Eurobitume Congress, Stockholm IA (June 1993) 256–262.

  16. Khalid, H. and Davies, E., ‘A dynamic approach to predict the performance of conventional and polymer modified binders and mixes containing them’, in Proceedings of 5th Eurobitume Congress, Stockholm IA (June 1993) 246–249.

  17. King, G. N., King, H. W., Harders, O., Chaverot, P. and Planche, J.-P., ‘Influence of asphalt grade and polymer concentration on the high temperature performance of polymer modified asphalt,’J. AAPT 61 (1992) 29–66.

    Google Scholar 

  18. King, G. N., King, H. W., Harders, O., Arand, W. and Planche, J.-P. ‘Influence of asphalt grade and polymer concentration on the low temperature performance of polymer modified asphalt,’J. AAPT 62 (1993) 1–22.

    Google Scholar 

  19. Kluttz R. Q. and Dongre, R., ‘Effects of SBS polymer modification on the low-temperature cracking of asphalt pavements’, inAsphalt Science and Technology, (A. M. Usmani, ed.), Marcel Dekker, N. Y.9 (1997) 217–233.

  20. Lu, X. and Isacsson, U., ‘Characterization of styrene-butadiene-styrene polymer modified bitumens—Comparison of conventional methods and dynamic mechanical analysis,’ASTM Journal of Testing and Evaluation 25 (1997) 383–390.

    Google Scholar 

  21. Lu, X. and Isacsson, U., ‘Rheological characterization of styrene-butadiene-styrene copolymer modified bitumens’,Construction and Building Materials 11 (1997) 23–32.

    Article  Google Scholar 

  22. Lu, X. and Isacsson, U., ‘Influence of styrene-butadiene-styrene and polymer modification on bitumen viscosity’Fuel 76 (1997) 1353–1359.

    Article  Google Scholar 

  23. Lu, X. and Isacsson, U., ‘Compatibility and storage stability of styrene-butadiene-styrene copolymer modified bitumens,’Mater. Struct. 30 (1997) 618–626.

    Google Scholar 

  24. Lu, X. and Isacsson, U., ‘Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens’,Fuel 77 (1998) 961–972.

    Article  Google Scholar 

  25. Muncy, H. W., King, G. N. and Prudhomme, J. B., ‘Improved rheological properties of polymer-modified asphalts’, in Asphalt Rheology-Relationship to Mixture, (O.E. Briscoe ed.),ASTM STP 941 (1987) 146–165.

  26. Nadkarni, V. M., Shenoy, A. V. and Mathew, J., ‘Thermomechanical behaviour of modified asphalts,’ Ind.Eng. Chem. Prod. Res. Dev. 24 (1985) 478–484.

    Article  Google Scholar 

  27. Oliver, J. W. H., Witt, H. P. and Isacsson, U., ‘Laboratory investigations of polymer modified bitumens using ARRB elastometer’, in Proceedings of RILEM Residential Seminar, Dubrovnik, Yugoslavia (September 1988) 105–109.

  28. Sebaaly, P. E., ‘Rheogical properties of polymer-modified asphalt binders’, inAsphalt Science and Technology, (A. M. Usmani, ed.), Marcel Dekker, N. Y.10 (1997) 235–247.

  29. Shim-Ton, J., Kennedy, K. A., Piggot, M. R. and Woodhams, R. T., ‘Low temperature dynamic properties of bitumin-rubber mixtures,’Rubber Chem. Tech. 53 (1980) 88–106.

    Google Scholar 

  30. Shuler, T. S., Collins, J. H. and Kirkpatrick, J. P. ‘Polymer modified asphalt properties related to asphalt concrete performance’, inAsphalt Rheology, Relationship to Mixture (O. E. Briscoe, ed.) West Conshohocken, PA, ASTM STP941 (1987) 179–193.

  31. Sybilski, D., ‘Non-Newtonian viscosity of polymer-modified bitumens,’Mater. Struct. 26 (1993) 15–23.

    Article  Google Scholar 

  32. Sybilski, D., ‘Relationship between absolute viscosity of polymer-modified bitumens and rutting resistance of pavement,’Mater. Struct. 27 (1994) 110–120.

    Article  Google Scholar 

  33. Wloczysiak, P., Vidal, A. and Papirer, E., ‘Relationship between rheological properties, morphological characters and composition of bitumen-styrene butadiene styrene copolymers mixes. II. A thermodynamical interaction,’J. Appl. Polym. Sci. 65 (1997) 1609–1618.

    Article  Google Scholar 

  34. Zanzotto, L., Stastna, J. and Ho, K., ‘Characterization of regular and modified bituments via their complex modulus,’J. Appl. Polym. Sci. 59 (1996) 1897–1905.

    Article  Google Scholar 

  35. Anderson, D. A., Christensen D. W., Bahia, H. U., Dongre, R., Sharma, M. G., Antle, C. E. and Button, J., ‘Binder characterization and evaluation, Vol. 3: Physical Charaterization.’ Strategic Highway Research Program National Research Council, Washington D. C., SHRP-A-369 Report (1994).

    Google Scholar 

  36. Bahia, H. U. and Anderson, D. A., ‘Strategic Highway Research Program binder rheological parameters: Bakground and comparison with conventional properties,’Trans. Res. Record 1488 (1995) 32–39.

    Google Scholar 

  37. Shenoy, A. V., ‘Unification of fundamental rheological data of paving asphalt through the material's volumetric-flow rate (MVR)’, FHWA Report (2000).

  38. Shenoy, A. V. and Saini, D. R., ‘Thermoplastic Melt Rheology and Processing,’ Marcel Dekker Inc., New York (1996).

    Google Scholar 

  39. Cox, W. P. and Mertz, E. H., ‘Correlation of dynamics and steady flow viscosities,’J. Polym. Sci. 28 (1958) 619–621.

    Article  Google Scholar 

  40. Pao, Y.-H., ‘Hydrodynamic theory for the flow of a viscoelastic fluid,’J. Appl. Phys. 28 (1957) 591–598.

    Article  MATH  MathSciNet  Google Scholar 

  41. Pao, Y.-H., ‘Theorics for the flow of dilute solutions of polymer and of non-diluted liquid polymers,’J. Polymer Sci. 61 (1962) 413–448.

    Article  Google Scholar 

  42. Spriggs, T. W., ‘A four constant model for viscoelastic fluids,’Chem. Engg Sci. 20 (1965) 931–946.

    Article  Google Scholar 

  43. Bogue, D. C., ‘An explicit constitutive equation based on integrated strain history,’Ind. Eng. Chem. Fundamentals 5 (1966) 253–259.

    Article  Google Scholar 

  44. Meister, B. J., ‘An intergral constitutive equation based on molecular network theory,’Trans. Soc Rheol. 15 (1971) 63–89.

    Article  Google Scholar 

  45. Saini, D. R. and Shenoy, A. V., ‘Dynamic and steady-state rheological properties of linear-low-density polyethylene melt,’Polym. Engg. Sci. 24 (1984) 1215–1218.

    Article  Google Scholar 

  46. De Waele, A., ‘Viscometry and plastometry,’J. Oil Color Chem. Assoc. 6 (1923) 33–69.

    Google Scholar 

  47. Ostwald, W., ‘About the rate function of the viscosity of disperesed systems,’Kolloid-Z 36 (1925) 99–117 (only available in German).

    Article  Google Scholar 

  48. Ostwald, W., ‘About the viscosity of colloidal solutions in laminar and turbulent conditions,’Kolloid-Z. 38 (1926) 261–280 (only available in German).

    Article  Google Scholar 

  49. Shenoy, A., ‘Developing unified rheological curves for polymer modified asphalts—Part II. Experimental Verification,’Mater, Struct. 33 (231) (2000) 430–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, A. Developing unified rheological curves for polymermodified asphalts—Part I. Theoretical analysis. Mat. Struct. 33, 425–429 (2000). https://doi.org/10.1007/BF02480661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480661

Keywords

Navigation