Skip to main content
Log in

Stress-strain behavior of reinforcing steel and concrete under seismic strain rates and low temperatures

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study investigates experimentally the uniaxial stress-strain behavior of reinforcing steel bars and concrete cylinders under various combinations of earth-quake-type strain rate (quasi-static to 0.1 /s) and temperature typical of summer and winter conditions in cold urban regions (+20°C to −40°C). The main objective of these tests was to give an indication of the combined effects of these two parameters on the uniaxial, monotonic, stress-strain curves of these materials. The results of the tensile tests indicate that the yield strength and the tensile strength of reinforcing steel increase moderately as both the strain rate increases and the temperature drops. The results of the compressive tests indicate that the compressive strength and Young’s modulus of concrete increase significantly as the strain rate increases and the temperature decreases.

Résumé

Cette étude a pour but d’évaluer expérimentalement le comportement uniaxial d’éprouvettes d’acier d’armature et de cylindres de béton. Des essais furent réalisés pour différentes combinaisons de températures (+20°C à −40°C) et de taux de déformation typiques d’événements sismiques (quasi-statique à 0.1 /s). L’objectif principal de ces essais était de donner une indication sur les effects combinés de ces deux paramètres sur les courbes contrainte-déformation, uniaxiales et monotones de ces matériaux. Les résultats de ces essais en traction indiquent que la limite élastique et la résistance à la traction de l’acier d’armatures s’accroissent légèrement lorsque que l’on observe à la fois une hausse du taux de déformation et une baisse de la température. Les résultats des essais de compression indiquent que la résistance à la compression et le module d’Young du béton augmentent de manière significantive quand le taux de déformation augmente et que la température baisse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, E. A., ‘The effect of speed of stretching and the rate of loading on the yielding of mild steel’,Journal of Applied Mechanics 5 (4) (1938) A137-A140.

    Google Scholar 

  2. Monjoine M. J., ‘Influence of rate of strain and temperature on yield stress of mild steel’,Journal of Applied Mechanics 11 (1944) 211–218.

    Google Scholar 

  3. Wright, R. N. and Hall W. J., ‘Loading rate effects in structural steel design’,Journal of the Structural Division 90 (55) (1964) 11–37.

    Google Scholar 

  4. Rao, N. R. N., Lohramann, M. and Tall, L., ‘Effect of strain-rate on the yield stress of structural steels’,ASTM Journal of Materials 1 (1) (1966).

  5. Wakabayashi, M., Nakamura, T., Iwai, S. and Hayashi, Y., ‘Effects of strain rate on the behavior of structural members’, Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, CA, (1984) Volume IV, 491–498.

    Google Scholar 

  6. Udagavva, K., Takanashi, K. and Kato, B., ‘Effects of displacement rates on the behavior of steel beams and composite beams’, Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, CA, (1984) Volume IV, 177–184.

    Google Scholar 

  7. Kaneta, K., Kohzu, I. and Fujimura, K., ‘On the strength and ductility of steel structural joints subjected to high-speed monotonic tensile loading,’ Proceedings of the 8th European Conference on Earthquake Engineering, Lisbon, Portugal, (1986) Volume 4, 7.2/17–7.2/24.

    Google Scholar 

  8. Soroushian, P. and Choi, K., ‘Steel mechanical properties at different strain rates’,Journal of Structural Engineering 113 (4) (1987) 863–872.

    Google Scholar 

  9. Fujimoto, M., Naruba, T. and Sasaki, S., ‘Strength and deformation capacity of steel brace under high-speed loading’, Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, (1988) Vol. IV, 139–144.

    Google Scholar 

  10. Nagataki, Y., Kitagawa, Y., Midorikawa, M. and Kashima, T., ‘Dynamic response analysis with effects of strain rate and stress relaxation’, Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan (1988) Vol. IV, 693–698.

    Google Scholar 

  11. Kassar, M. and Yu, W. W., ‘Effect of strain-rate on material properties on sheet steels’,Journal of Structural Engineering 118 (11) (1992) 3136–3150.

    Google Scholar 

  12. Suita, K., Kaneta, K. and Khozu, I., ‘The effect of strain rate in steel structural joints due to high speed cyclic loading’, Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain (1992) 2863–2866.

  13. Suita, K., Kohzu, I. and Yasutomi, M., ‘The effect of strain rate in restoring force characteristics of steel braced structures under high speed cyclic loading’, Proceedings 11th World Conference on Earthquake Engineering, Acapulco, Mexico (1996) Paper No. 1220 (on a CD-ROM).

  14. Obata, M., Goto, Y., Matsura, S. and Fujiwara, H., ‘Ultimate behavior of tie plates at high-speed tension’,Journal of Structural Engineering 122 (4) (1996) 416–422.

    Article  Google Scholar 

  15. Kohzu, I. and Suita, K., ‘Single or few excursions failure of steel structural joints due to impulsive shocks in the 1995 Hygoken-Nanbu earthquake’, Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico (1996) Paper No. 412 (on a CD-ROM).

  16. Uang, C.-M. and Bordad, D. M., ‘Dynamic testing of full-scale steel moment connections’, Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico (1996) Paper No. 407 (on a CD-ROM).

  17. Kaneko, H., ‘Influence of strain-rate on yield ratio. Kobe Earthquake Damage to Steel Moment Connections and Suggested Improvement’, JSSC Technical Report No. 39/96 (1997).

  18. Gioncu, V., ‘Influence of strain-rate on the behavior of steel members’, Proceedings of the Third International Conference STESSA 2000, Montreal, Canada (2000), 19–26.

  19. Matsumoto, Y., Yamada, S. and Akiyame, H., ‘Fracture of beam-to-column connection simulated by means of the shaking table test using the inertial loading equipment’, Proceedings of the Third International Conference STESSA 2000, Montreal, Canada (2000) 215–222.

  20. Sanchez, L. and Plumier, A., ‘Tests on the strain rate effects on beam-to-column steel connection’, Proceedings of the Third International Conference STESSA 2000, Montreal, Canada (2000) 247–254.

  21. Mahin, S. A. and Bertero, V. V., ‘Rate of loading effects on uncracked and repaired reinforced concrete members’, Report No. EERC 72-9, Earthquake Engineering Research Center, University of California, Berkley, CA (1972).

    Google Scholar 

  22. Mirza, S. A. and MacGregor, S. A., ‘Variability of mechanical properties of reinforcing bars’,ASCE Journal of the Structural Division 105 (5) (1979) 921–937.

    Google Scholar 

  23. Mander, J. B., Priestley, M. J. N. and Park, R., ‘Seismic design of bridge piers’, Research Report No. 84-2, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand (1984).

    Google Scholar 

  24. CEB. ‘Concrete structures under impact and impulsive loading’, Bulletin d’information No. 187, Comité Euro-International du Béton. Lausanne, Switzerland (1988).

    Google Scholar 

  25. Wallace, B. J. and Krawinkler, H., ‘Small-scale model tests of structural steel assemblies’,Journal of Structural Engineering 115 (8) (1989) 1999–2015.

    Article  Google Scholar 

  26. Ammann, H. and Nussbaumer, H., ‘Behavior of concrete and steel under dynamic actions’, in Vibrations problems in structures practical guide. Chapter F. H. Bachmannet al., (Burkhäuser Verlag, Boston 1995) 177–183.

    Google Scholar 

  27. Restrepo-Posada, J. I., ‘Seismic behavior of connections between precast concrete elements’, Research Report No. 93-3, Department of Civil Engineering, University of Canterbury, New Zealand (1993).

    Google Scholar 

  28. Restrepo-Posada, J. I., Dodd, L. L., Park, R. and Cooke, N., ‘Variables affecting cyclic behavior of reinforcing steel’,Journal of Structural Engineering 120 (11) (1994) 3178–3196.

    Article  Google Scholar 

  29. McClintock, F. A. and Ali, S. A., ‘Mechanical behavior of materials’ (Reading, Addison-Wesley, MA, 1966) 546–561.

    Google Scholar 

  30. Dutta, P. K., ‘Behavior of materials at cold regions temperatures’, Special Report 88-9. US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory (1988).

  31. Bruneau, M., Uang, C.-M. and Whittaker, A., ‘Ductile design of steel structures’, (McGraw-Hill, New York, 1997).

    Google Scholar 

  32. Kurobane, Y., Azuma, K. and Ogawa, K., ‘Brittle fracture in steel building frames Comparative study of Northridge and Kobe earthquake damage’, Proceedings of the International Institute of Welding, Annual Assembly, San Francisco, CA (1997) 1–30.

  33. Faucher, B., Wang K. C. and Bouchard, R., ‘Relationship between strain-rate sensitivity of yield stress and transition temperature for an arctic grade steel’, Canada Centre for Mineral and Energy Technology (CAMNET), Report No. 87-50 (1987).

  34. Barson, J. M. and Rofle, S. T., ‘The correlations between KIC and Charpy V notch test results in the transition-temperature range’, in Impact Testing of Metals, ASTM STP466 (American Society for Testing and Materials, 1970) 281–302.

  35. Roberts, R., ‘Fracture toughness of bridge steels’, Phase II Report FHWA-RD-74-59, Federal Highway Administration. Washington, DC (1974).

    Google Scholar 

  36. Barsom, J. M., ‘Development of the AASHTO fracture-toughness requirements for bridge steel’,Engineering Fracture Mechanics 7 (3) (1975) 605–618.

    Article  Google Scholar 

  37. Bischoff, P. H. and Perry, S. H., ‘Compressive behavior of concrete at high strain rates’,Mater. Struct. 24 (144) (1991) 425–450.

    Article  Google Scholar 

  38. Bischoff, P. H. and Perry, S. H., ‘Impact behavior of plain concrete in uniaxial compression’,ASCE Journal of Engineering Mechanics 121 (6) (1995) 685–693.

    Article  Google Scholar 

  39. Berkovitch, I., ‘Using concrete to store liquefied gases’,Civil Engineering (1981) 27–29.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filiatrault, A., Holleran, M. Stress-strain behavior of reinforcing steel and concrete under seismic strain rates and low temperatures. Mat. Struct. 34, 235–239 (2001). https://doi.org/10.1007/BF02480594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480594

Keywords

Navigation