Advertisement

Materials and Structures

, Volume 38, Issue 1, pp 39–46 | Cite as

Fatigue of CFRPs externally bonded to concrete

  • E. Ferrier
  • D. Bigaud
  • P. Hamelin
  • L. Bizindavyi
  • K. W. Neale
Scientific Reports

Abstract

The external bonding of fibre reinforced polymers (FRPs) to concrete beams is a particularly attractive rehabilitation technique for increasing or restoring the strength of existing reinforced concrete flexural members. The durability and the performance of FRP-strengthened structures subjected to cyclic loading depend directly on the fatigue behaviour of the FRP itself, as well as on that of the FRP-to-concrete interface. This paper aims at increasing the database on the fatigue behaviour of these types of reinforcement using two test set-ups developed in two distinct research laboratories. The primary purpose of this paper is to propose a methodology for the determination of the value of the allowable shear bond strength (fadh,v,u) and the tensile FRP strength (ff,u) as a function of the numbers of cycles of loading. Results from an experimental investigation on the cyclic behaviour of single-lap and double-lap CFRP-concrete joints are reported. For both types of test set-up, the cyclic bond stress-slip relations are presented and discussed. Analytical S-N relations (cyclic stress range vs. the number of cycles to failure) are proposed.

Keywords

Fatigue Fatigue Life Concrete Beam Fatigue Process Average Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les renforts externes mis en œuvre par collage constituent une méthode efficace pour le renforcement en partie tendue des éléments de type poutres. La durabilité et la performance des structures renforcées par matériaux composites sont directement liées à l'endommagement du composite et de son interface avec le béton. Cet article vise à définir la durabilité vis-à-vis de sollicitations de fatigue grâce à deux essais développés dans deux laboratoires distincts. L'objectif principal de cet article est de définir à la fois les niveaux de contraintes admissibles en cisaillement d'un joint de colle (fadh,v,u) et les résistances en traction d'un composite (ff,u) en fonction du nombre de cycles de chargement. Les résultats expérimentaux obtenus à partir d'un essai sur joint de colle à simple recouvrement et sur un joint de colle à double recouvrement sont présentés. Pour chaque type d'essais, la relation contrainte d'adhérence-glissement sous charges cycliques est analysée. Des courbes d'endurance de type S-N (contrainte à la rupture en fonction du nombre de cycles) sont proposées.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Meier, U., Deuring, M., Meier, H. and Schwegler, G., ‘Strengthening of structures with CFRP laminates: research and applications in Switzerland’, in ‘Advanced Composite Materials in Bridges and Structures’, K.W. Neale and P. Labossière, Eds. (Canadian Society for Civil Engineering, Montreal, Canada, 1992) 243–251.Google Scholar
  2. [2]
    Neale, K.W. and Labossière, P., ‘State-of-the-art report on retrofitting and strengthening by continuous fibre in Canada’, in ‘Non-Metallic Reinforcement for Concrete Structures’, (Japan Concrete Institute, 1997) 25–39.Google Scholar
  3. [3]
    Varastehpour, H. and Hamelin, P., ‘Strengthening of concrete beams using fiber-reinforced plastics’,Mater. Struct., RILEM 30 (1997) 160–166.Google Scholar
  4. [4]
    Barnes, R.A. and Mays, G.C., ‘Fatigue performance of concrete beams strengthened with CFRP plates’,Journal of Composites for Construction, ASCE 3 (2) (1999) 63–72.CrossRefGoogle Scholar
  5. [5]
    Shahawy, M. and Beitelman, T.E., ‘Fatigue performance of RC beams strengthened with CFRP laminates’, Proceedings of Durability of Fibre Reinforced Polymers (FRP) Composites for Construction, Benmokrane B. and H. Rahman, Eds, Université de Sherbrooke, Sherbrooke, Québec (1998) 169–178.Google Scholar
  6. [6]
    Ferrier, E. and Hamelin, P., ‘Fatigue behavior of composite reinforcement for concrete structure’,ACI Scientific Publications SP 188-48 (1999) 535–545.Google Scholar
  7. [7]
    Ferrier, E. and Hamelin, P., ‘Concrete beams reinforced by fibre-reinforced plastics: the effect of temperature on the adhesive layer’,Composite Science and Technology 61 (3) (2001) 425–431.CrossRefGoogle Scholar
  8. [8]
    Karbhari, V.M. and Seible, F., ‘Design consideration for the use of fiber reinforced polymeric composites’, Division of Structural Engineering Report, University of California at San Diego (1998) 50–61.Google Scholar
  9. [9]
    Täljsten, B., ‘Defining anchor lengths of steel and CFRP plates bonded to concrete’,International Journal of Adhesives 17 (4) (1997) 319–327.CrossRefGoogle Scholar
  10. [10]
    Bizindavyi, L. and Neale, K.W., ‘Transfer lengths and bond strengths for composites bonded to concrete’,Journal of Composites for Construction, ASCE 3 (4) (1998) 153–160.CrossRefGoogle Scholar
  11. [11]
    Chajes, M.J. and Finch, W.W.Jr., ‘Bond and force transfer of composite material plates bonded to concrete’,ACI Structural Journal 93 (2) (1996) 208–217.Google Scholar
  12. [12]
    Brosens, K. and Van Gemert, D., ‘Anchorage design for externally bonded carbon fiber reinforced polymer laminates’,ACI Scientific Publications SP 188-48 (1999), 635–645.Google Scholar
  13. [13]
    Ueda, T., Sato, Y. and Asano, Y., ‘Experimental study on bond strength of continuous carbon fiber sheet’,ACI Scientific Publications SP 188-48 (1999) 407–416.Google Scholar
  14. [14]
    Matsumoto, N., Harada, T. and Yagi, K., ‘Evolution and standardization of mechanical test methods for continuous fiber sheet in Japan’,ACI Scientific Publications SP 188-48 (1999) 33–53.Google Scholar
  15. [15]
    Yin, J. and Wu, Z., ‘Interface crack propagation in fiber reinforced polymer-strengthened concrete structures using nonlinear fracture mechanics’,ACI Scientific Publications SP 188-48 (1999) 1035–1047.Google Scholar
  16. [16]
    Japanese Concrete Institute, ‘Report II of Research Committee on continuous fiber reinforced concreter’,Japanese Concrete Institute (1998).Google Scholar
  17. [17]
    Joneja, S.K., ‘Postcuring changes polymer properties’,Research and Development 45 (1985) 84–88.Google Scholar
  18. [18]
    Trotignon, J.P. and Verdu, J., ‘Fatigue behavior of some temperature-resistant polymers’,Journal of Material Science 28 (8) (1993) 2207–2211.CrossRefGoogle Scholar
  19. [19]
    Nakassawa, M., ‘Mechanical fatigue of epoxy resin’,Journal of Material Science 30 (1995) 1266–1272.CrossRefGoogle Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • E. Ferrier
    • 1
  • D. Bigaud
    • 1
  • P. Hamelin
    • 1
  • L. Bizindavyi
    • 2
  • K. W. Neale
    • 3
  1. 1.Laboratoire Mécanique Matériaux et StructuresUniversité Lyon 1VilleurbanneFrance
  2. 2.Department of Civil EngineeringQueen's UniversityKingstonCanada
  3. 3.Département de Génie CivilUniversité de SherbrookeSherbrookeCanada

Personalised recommendations