Advertisement

Materials and Structures

, Volume 38, Issue 1, pp 11–16 | Cite as

Appraisal of the novel single contoured-cantilever beam

  • D. M. Boyajian
  • J. F. Davalos
  • I. Ray
Scientific Reports

Abstract

Research in the areas of rehabilitation and/or strengthening of concrete structures is currently focused on the external bonding of fiber reinforced polymer (FRP) plates or fabrics. A concern, however, exists with the long-term reliable performance of the interface bond that is centrally critical to the successful application of this technology. Traditionally, interface studies of the wood-adhesive bond, as an example, had effectively been accomplished using the well-established fracture mechanics double cantilever beam (DCB) approach, which, unfortunately, could not be extended to investigating FRP-concrete interfaces because of the inherent weakness of the concrete material under tension. In order to overcome such a hindrance, the authors devised a novel fracture mechanics specimen known as the single contoured-cantilever beam (SCCB), and have used it to successfully characterize the FRP-concrete interface bond under pristine, dry, wet-dry, and freeze-thaw conditions. This paper attempts to both summarize the relevancy of this new test methodology and appraise its viability as an indispensable fracture mechanics tool for FRP-concrete interface bond characterization.

Keywords

Fracture Toughness Crack Opening Displacement Fiber Reinforce Polymer Linear Elastic Fracture Mechanic Adhesive Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les recherches dans le domaine de la réhabilitation et/ou du renforcement de structures en béton sont actuellement concentrées sur l'attachement extérieur de plaques ou bandes de ruban fabriquées à base de fibres de polymère (Fiber Reinforced Polymer, FRP). Cependant, la fiabilité à long terme du lien entre les deux matériaux est l'élément critique pour une utilisation efficace de cette technique. Jusqu'à présent, les études, menées à titre d'exemple, sur le lien entre bois et adhésif, sont fondées sur la méthode de la double poutre encastrée de la mécanique de la rupture (Double Cantilever Beam, DCB), méthode, qui malheureusement ne peut pas être extrapolée pour l'étude du lien entre béton et fibres de polymère, à cause de la faible résistance du béton à la tension. Dans le but de résoudre ce problème, les auteurs ont développé une nouvelle méthode, basée sur la mécanique de la rupture, connue comme la méthode de la poutre encastrée à simple contour (Single Contoured-Cantilever Beam, SCCB) et l'ont utilisée avec succès pour modéliser le lien entre béton et fibres de polymère sous différentes conditions: conditions originales, humides-sèches et sous cycle de gel-dégel. Cet article montre la pertinence de cette nouvelle méthode et évalue sa viabilité comme outil indispensable de la mécanique de la rupture pour la modélisation du lien entre béton et fibres de polymère.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ripling, E.J., Mostovoy, S. and Corten, H.T., ‘Fracture mechanics: a tool for evaluating structural adhesives’,J. Adhesion 3 (1971) 107–123.Google Scholar
  2. [2]
    Mostovoy, S., Crosley, P.B. and Ripling, E.J., ‘Use of crackline-loaded specimens for measuring plane-strain fracture toughness’,J. Materials 2(3) (1967) 661–681.Google Scholar
  3. [3]
    Boyajian, D.M., Davalos, J.F. and Qiao, P.Z., ‘Development of a test specimen for FRP-concrete Mode-I fracture’, Proceedings of the Third International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS, Ottawa, 2000) 445–452.Google Scholar
  4. [4]
    Boyajian, D.M., Davalos, J.F., Ray, I. and Qiao, P.Z., ‘Evaluation of interface fracture of concrete externally reinforced with FRP’, Proceedings of the 2nd Int'l. Conference on Durability of Fiber Reinforced Polymer Composites for Construction (CDCC, Montréal, 2002) 309–320.Google Scholar
  5. [5]
    Boyajian, D.M., Davalos, J.F., Ray, I. and Kodkani, S., The CFRP-concrete interface subjected to sodium-sulfate and-hydroxide attack’, 17th Annual Technical Conference: American Society for Composites (ASC, Published by CRC Press, LLC (on CD-ROM), West Lafayette, 2002) Session WB5, paper 088, 9 p.Google Scholar
  6. [6]
    Marcus, H.L. and Sih, G.C., ‘A crackline-loaded edge-crack stress corrosion specimen’,Engineering Fracture Mechanics 3 (1971) 453–461.CrossRefGoogle Scholar
  7. [7]
    Davies, P. and Benzeggagh, M.L., ‘Interlaminar Mode-I fracture testing’, Chapter 3 of: Application of Fracture Mechanics to Composite Materials (1989) 81–112.Google Scholar
  8. [8]
    Ripling, E.J., Mostovoy, S. and Patrick, R. L., ‘Measuring fracture toughness of adhesive joints’,Materials Research & Standards 4 (3) (1964) 129–134.Google Scholar
  9. [9]
    Davalos, J.F., Madabhusi-Raman, P. and Qiao, P.Z., ‘Characterization of Mode-I fracture of hybrid material interface bonds by contoured DCB speciments’,Engineering Fracture Mechanics,58 (3) (1997) 173–192.CrossRefGoogle Scholar
  10. [10]
    Davalos, J.F., Kodkani, S.S., Boyajian, D.M. and Ray, I. ‘Freeze-thaw durability of interface for externally bonded GFRP to normal and high-performance concrete’, 18th Annual Technical Conference: American Society for Composites (ASC, Published by CRC Press, LLC (on CD-ROM), Gainesville, 2003) Session WA1, paper 157, 9 p.Google Scholar
  11. [11]
    Ebewele, R.O., River, B.H. and Koutsky, J.A., ‘Tapered double cantilever beam fracture tests of phenolic-wood adhesive joints: Part I. Development of specimen geometry; effects of bondline thickness, wood anisotropy and cure time on fracture energy’,Wood and Fiber 11(3) (1979) 197–213.Google Scholar
  12. [12]
    Moavenzadeh, F. and Kuguel, R., ‘Fracture of concrete’,J. Materials,4(3) (1969) 497–519.Google Scholar
  13. [13]
    Kaplan, M.F., ‘Crack propagation and the fracture of concrete’,J. American Concrete Institute 58(5) (1961) 591–610.Google Scholar
  14. [14]
    Brown, J.H., ‘Measuring the fracture toughness of cement paste and mortar’,Magazine of Concrete Research 24(81) (1972) 185–196.Google Scholar
  15. [15]
    Jenq, Y.S. and Shah, S.P., ‘A fracture toughness criterion for concrete’,Engineering Fracture Mechanics 21(5) (1985) 1055–1069.CrossRefGoogle Scholar
  16. [16]
    Shah, S., Swartz, S. and Ouyang, C., ‘Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials’, (see pp. 88–97; 174–179) (John Wiley and Sons, Inc., New York, 1995) 585 p.Google Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • D. M. Boyajian
    • 1
  • J. F. Davalos
    • 2
  • I. Ray
    • 2
  1. 1.Department of Civil EngineeringThe University of North Carolina at CharlotteCharlotteUSA
  2. 2.Department of Civil and Environmental EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations