Advertisement

Materials and Structures

, Volume 33, Issue 8, pp 499–510 | Cite as

Experimental response of top and seat angle semi-rigid steel frame connections

  • L. Calado
  • G. De Matteis
  • R. Landolfo
Scientific Reports

Abstract

The current study is concerned with the structural response of typical semi-rigid steel beam-to-column joints. In particular, the behaviour of bolted cleat angle connections is investigated under different loading conditions, both monotonic and cyclic loading being considered. Besides, aiming at assessing the susceptibility of the analysed connection typology to low-cycle fatigue, the latter has been referred to both constant and variable amplitude deformations. Therefore, 15 full-scale tests have been carried out by comparing the performance of specimens with reference to three different sizes of column member as well. Obtained results are provided in terms of moment-rotation relationship, dissipated energy and strength degradation per cycle. As expected, outcomes show that the main sources of inelastic deformation are located into cleat angles, which constitute the most influential component. As a consequence, the column size has a limited effect on the whole hysteretic response of the joint, while results appear to be strongly dependent on the applied deformation history.

Keywords

Deformation Amplitude Shake Table Test Panel Zone Ultimate Moment Angle Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Dans cet article, on étudie le comportement structurel d’un type de liaisons poutre-poteau semi-rigides. La poutre et le poteau sont liés par des cornières. Les procédures de chargement que l’on a suivies incluent plusieurs cas de chargements monotones et cycliques. Pour déterminer le comportement de ces liaisons à la fatigue (petit nombre de cycles et grandes déformations plastiques), on a adopté plusieurs procédures de déplacements à amplitude constante. L’étude a été appliquée à trois types de poteaux. Comme on a considéré cinq liaisons différentes pour chaque type de poteau, un total de quinze liaisons ont été essayées. Les comportements étudiés ont été représentés sous forme de diagrammes moment—rotation, de l’énergie dissipée et de la dégradation de rigidité, et ont été comparés entre eux. Comme prévu, la déformation plastique a eu lieu surtout dans les cornières, lesquelles sont donc les éléments les plus importants de la liaison. La dimension de la section du poteau influence très peu le comportement histérétique de la liaison, lequel, d’autre part, dépend des déplacements précédemment appliqués.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Engelhardt, M. D. and Sabol, T. A., ‘Seismic-resistant steel moment connections: developments since the 1994 Northridge earthquake’,Progress in Structural Engineering and Materials 1 (1) (1997), 68–77.CrossRefGoogle Scholar
  2. [2]
    Georgescu, D., ‘Semi-rigidity: General report’, in STESSA’94 ‘Behaviour of Steel Structures in Seismic Areas’, Proceedings of an International Conference, Timisoara, Romania, Aug. 1994 (ed. by F. M. Mazzolani and V. Gioncu), 519–534.Google Scholar
  3. [3]
    Steenhuis, C. M., Stark, J. W. B. and Gresnigt, A. M., ‘Cost effective connections’,Progress in Structural Engineering and Materials 1 (1) (1997), 18–24.CrossRefGoogle Scholar
  4. [4]
    Leon, R. T., ‘Seismic performance of bolted and riveted connections’, in ‘Program to Reduce the Earthquake Hazards of Steel Moment Frames Structures’, (FEMA-288, Report No. SAC-95-09, Sacramento, California, 1997).Google Scholar
  5. [5]
    Astaneh-Asl, A., Nader, M. N. and Malik, L., ‘Cyclic behaviour of double-angle connections’,Journal of Structural Engineering, ASCE 115 (5) (1989), 1101–1118.Google Scholar
  6. [6]
    Nader, M. N. and Astaneh-Asl, A. ‘Shaking table tests of rigid, semi-rigid and flexible steel frames’,Journal of Structural Engineering, ASCE 122 (6), (1996), 589–596.CrossRefGoogle Scholar
  7. [7]
    Eurocode 3—ENV 1993-1-1, ‘Design of Steel Structures. Annex J, Joint in Building Frames’ (CEN/TC250/SC3-PT, European Committee of Standardisation, Brussels, 1997).Google Scholar
  8. [8]
    Della Corte, G., De Matteris, G. and Landolfo, R., ‘Influence of different hysteretic behaviours on seismic response of SDoF systems’, in ‘12th World Conference on Earthquake Engineering’, Proceedings of an International Conference, Auckland, New Zealand, Feb. 200, CD-ROM.Google Scholar
  9. [9]
    Kishi, N. and Chen, W. F., ‘Moment rotation of top and seat angle connections’, Structural Engineering Report No. CE-STR-87-4, School of Civil Engineering, Purdue University, West Lafayette, Ind., (1987).Google Scholar
  10. [10]
    Calado, L., De Matteis, G., Landolfo, R. and Mazzolani, F. M., ‘Cyclic behaviour of steel beam-to-column connections: interpretation of experimental results’, in SDSS’99 ‘Stability and Ductility of Steel Structures’ Proceedings of 6th International Colloquium, Timisoara (Romania), Sept. 1999, (ed. by D. Dubina and M. Ivanyi), Elsevier, 211–220.Google Scholar
  11. [11]
    Calado, L., De Matteris, G. and Landolfo, R., ‘Experimental analysis on angle beam-to-column joints under reversal cyclic loading’, in ‘XVII C.T.A.’, Proceedings of Italian Conference on Steel Construction, Napoli, Italy, Oct. 1999, Vol. 1, 103–114.Google Scholar
  12. [12]
    Della Corte, G., De Matteis, G. and Landolfo, R., ‘A mathematical model interpreting the cyclic behaviour of steel beam-to-column joints, in ‘XVII C.T.A.’, Proceedings of Italian Conference on Steel Construction, Napoli, Italy, Oct. 1999, Vol. 1, 115–126.Google Scholar
  13. [13]
    Madner, J. B., Chen, S. S. and Pekcan, G., ‘Low-cycle fatigue behaviour of semi-rigid top-and-seat angle connections’,Engineering Journal, AISC Third quarter (1994) 111–122.Google Scholar
  14. [14]
    Marley, M.J. and Gerstle K. H. ‘Analysis of tests of flexibilityconnected steel frames’, AISC Project Report No. 199, Dept. of Civil Engineering, University of Colorado, Boulder (1982).Google Scholar
  15. [15]
    Ballio, G., Calado, L., De Martino, A., Faella, C. and Mazzolani, F. M., ‘Cyclic behaviour of steel beam-to-column joints experimental research’,Costruzioni Metalliche 2 (1987), 69–88.Google Scholar
  16. [16]
    Azizinamini, A., Radziminiski J. B., ‘Static and cyclic performance of semi-rigid steel beam-to-column connections’,Journal of Structural Engineering, ASCE 115 (12) (1989), 2979–2999.Google Scholar
  17. [17]
    Calado, L. and Ferreira, J., ‘Cyclic behaviour of steel beam-to-column connections—an experimental research’, in STESSA’94 ‘Behaviour of Steel Structures in Seismic Areas’ Proceedings of an International Conference, Timisoara, Romania, Aug. 1994 (ed. by F. M. Mazzolani and V. Gioncu), 381–389.Google Scholar
  18. [18]
    Bernuzzi, C., Zandonini, R. and Zanon, P., ‘Experimental analysis and modelling of semi-rigid steel joints under cyclic reversal loading’,Journal of Constructional Steel Research 38 (2) (1996), 95–123.CrossRefGoogle Scholar
  19. [19]
    Bernuzzi C., Calado, L. and Castiglioni, C. A., ‘Ductility and load carrying capacity prediction of steel beam-to-column connections under cycling reversal loading’,Journal of Earthquake Engineering 1 (2) (1997), 401–432.CrossRefGoogle Scholar
  20. [20]
    Kukreti, A. R. and Abolmaali, A. S., ‘Moment-rotation hysteresis behaviour of top and seat angle steel frame connections’,Journal of Structural Engineering 125 (8) (1999), 810–820.CrossRefGoogle Scholar
  21. [21]
    De Luca, A., De Martino, A., Pucinotti, R. and Puma, G. ‘(Semi-rigid?) Top and seat angle connections: review of experimental data and comparison with Eurocode 3’, in ‘XV C.T.A.’, Proceedings of Italian Conference on Steel Construction, Riva del Garda, Italy, Oct. 1995, 315–336.Google Scholar
  22. [22]
    Stelmark, T. W., Marley, M. J. and Gerstle, K. H., ‘Analysis and tests of flexible connected steel frames’,Journal of Structural Engineering, ASCE 112 (7) (1986), 1573–1588.CrossRefGoogle Scholar
  23. [23]
    Leon, R. T. and Shin, J. K. ‘Performance of semi-rigid frames’, in ‘Restructuring: America and Beyond’ Proceedings of American Conference ‘Structures Congress XIII’, ASCE, New York 1995, 1020–1035.Google Scholar
  24. [24]
    ECCS, ‘Recommended Testing Procedure for Assessing the Behaviour of Structural Steel Elements under Cyclic Loads’, 45, (European Convention for Constructional Steelwork, Brussels, 1986).Google Scholar
  25. [25]
    ATC, ‘Guidelines for Cyclic Seismic Testing of Components of Steel Structures’, Publication No. 24, (Applied Technology Council, Redwood City, CA, 1992).Google Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • L. Calado
    • 1
  • G. De Matteis
    • 2
  • R. Landolfo
    • 3
  1. 1.Dept. of Civil Engineering and ArchitectureInstituto Superior TécnicoLisbonPortugal
  2. 2.Dept. of Structural Analysis and DesignUniversity of Naples Federico IIItaly
  3. 3.D.S.S.A.R.University of Chieti G. D’AnnunzioItaly

Personalised recommendations