Skip to main content
Log in

Comparative performance of chloride attenuating and corrosion inhibiting systems for reinforced concrete

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper reports a laboratory-based study carried out to compare the performance of various proprietary concrete protection systems, designed to reduce chloride ingress and reinforcement corrosion. These include: controlled permeability formwork (CPF), a silane/siloxane hydrophobic surface treatment (S/S), an integral liquid waterproofing admixture (WP) and a corrosion-inhibiting chemical admixture (CI). Tests were carried out on a Portland cement (PC) concrete (40 N/mm2 design strength) for chloride diffusion index (using a two-cell compartment accelerated test) and, under cyclic wetting and drying conditions, total chloride content at cover depth (25 mm) and corrosion of carbon steel in reinforced concrete specimens (using half-cell potential and corrosion current density (polarisation resistance) measurements). The results indicate that for all protection systems, resistance to chloride ingress was improved, with the greatest benefits noted for the S/S and CPF concretes. Corrosion levels occurring for these generally followed the ranking of chloride ingress rates. The CI was found to reduce the rate of chloride ingress and to give lowest corrosion current densities in relation to chloride contents. This system appeared to provide best overall performance. The practical implications of the results are considered in terms of equivalence of the systems to an increase in design strength or cover depth,i.e. parameters used for specifying concrete durability in standards, and the wider issues relating to their selection and use are reviewed.

Résumé

Ce papier présente une étude réalisée en laboratoire afin de comparer les performances de divers systèmes de propriétés de protection du béton, conçus pour réduire l'entrée des chlorures et la corrosion des armatures. Ceux-ci incluent le cadre contrôlé de perméabilité (CPF), un traitement de surface hydrophobe à base de silane/siloxane (S/S), un liquide intégral imperméabilisant le mélange (WP) et un mélange chimique empêchant la corrosion (CI). Les essais ont été effectués sur du béton de ciment Portland (résistance de 40 N/mm2) pour l'indice de diffusion des chlorures (en utilisant un essai accéléré avec compartiment à deux cellules) et, sous conditions cycliques sèches et humides, le contenu total des chlorures à la profondeur de couverture (25 mm) et la corrosion de l'acier de carbone dans les échantillons de béton armé (à l'aide des mesures du potentiel à mi-cellule et de la densité de courant de la corrosion (résistance de polarisation)). Les résultats indiquent que pour tous systèmes de protection, la résistance à l'entrée des chlorures a été améliorée, avec les plus grands profits notés pour les bétons de S/S et CPF. Les niveaux de corrosion observés pour ceux-ci, ont suivi généralement le classement des taux d'entrée des chlorures. Le CI s'est avéré pouvoir réduire le taux d'entrée des chlorures et donner les densités de courant de la corrosion les plus basses par rapport aux contenus de chlorures. Ce système est apparu comme offrant les meilleures performances générales. Les implications pratiques de ces résultats sont considérées en termes d'équivalence des systèmes à une augmentation de la résistance de base ou de la profondeur de couverture, à savoir les paramètres utilisés pour spécifier la durabilité du béton dans les normes, et les questions plus larges relatives à leur sélection et à leur usage sont réexaminées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Concrete Society, ‘Developments in Durability Design and Performance-Based Specification of Concrete’, Concrete Society Special Publication CS 109 (Crowthorne, 1996).

  2. Hobbs, D.W., ‘Minimum Requirements for Durable Concrete’ (British Cement Association, Crowthorne, 1998).

    Google Scholar 

  3. Taywood Engineering Ltd., ‘Guidance on the Selection of Measures for Enhancing Reinforced Concrete Durability’, (The Concrete Society, Crowthorne, to be published, 2003).

    Google Scholar 

  4. British Standards Institution, ‘BS 5328-1. Concrete. Guide to Specifying Concrete’ and ‘BS 5328-2. Concrete. Methods for Specifying Concrete Mixes’ (London, 1997).

  5. McCarthy, M.J., Giannakou, A. and Jones, M.R., ‘Specifying concrete for chloride environments using controlled permeability formwork’,Mater. Struct. 34 (243) (Nov. 2001) 566–576.

    Article  Google Scholar 

  6. British Standards Institution, ‘BS 8110-1. ‘Design of Concrete. Concrete. Methods for specifying concrete mixes’ (London, 1997).

  7. British Standards Institution, ‘BS 12. Specification for Portland Cement’ (London, 1996).

  8. British Standards Institution, ‘BS 882. Specification for aggregates from natural sources for concrete’ (London, 1992).

  9. British Standards Institution, ‘BS 4449. Specification for carbon steel bars for the reinforcement of concrete’ (London, 1997).

  10. British Standards Institution, ‘BS 6744. Specification for austenitic stainless steel bars for the reinforcement of concrete’ (London, 1988).

  11. Teychenne, D.C., Nichols, J.C., Franklin, R.E. and Hobbs, D.W., ‘Design of Normal Concrete Mixes’, 2nd Edition, revised by B.K. Marsh (Building Research Establishment, 1997).

  12. Dhir, R.K., Jones, M.R. and McCarthy, M.J., ‘PFA concrete: chloride-induced reinforcement corrosion’,Magazine of Concrete Research 46 (169) (1994) 269–278.

    Google Scholar 

  13. Dhir, R.K., McCarthy, M.J., Zhou, S. and Tittle, P.A.J., ‘Role of cement content in the specification for durability of concrete: cement type influences’, Proceedings of the Institution of Civil Engineers; Structures and Buildings (in press, 2003).

  14. Hewlett, P.C., ‘Lea's Chemistry of Cement and Concrete’ (Arnold, London, 1998).

    Google Scholar 

  15. Dhir, R.K., Jones, M.R., Ahmed, H.E.H. and Seneviratne, A.M.G., ‘Rapid assessment of chloride diffusion coefficient in concrete’,Magazine of Concrete Research 42 (152) (1990) 177–185.

    Google Scholar 

  16. Jones, M.R., Dhir, R.K. and Magee, B.J., ‘Concretes containing ternary blended binders, resistance to chloride ingress and carbonation’,Cement and Concrete Research 26 (6) (1997) 835–831.

    Google Scholar 

  17. British Standards Institution, ‘BS 1881-124. Testing Concrete. Methods for Analysis of Hardened Concrete’ (London, 1988).

  18. Stern, M. and Geary, A.L., ‘Electrochemical polarisation I: a theoretical analysis of the shape of polarisation curves’,Journal of the Electrochemical Society 104 (1) (1957) 56–63.

    Google Scholar 

  19. Alonso, C., Andrade, C. and Gonzalez, J.A., ‘Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types’,Cement and Concrete Research 8 (1988) 687–698.

    Article  Google Scholar 

  20. Mangat, P.S. and Molloy, B.T., ‘Influence of PFA, slag and microsilica on chloride-induced corrosion of reinforcement in concrete’,Cement and Concrete Research 21 (1991) 819–834.

    Article  Google Scholar 

  21. Dhir, R.K., Jones, M.R. and McCarthy, M.J., ‘PFA concrete: carbonation-induced reinforcement corrosion rates’,Proceedings of the Institution of Civil Engineers: Structures and Buildings 94 (3) (1992) 335–342.

    Google Scholar 

  22. Price, W.F. and Widdows, S.J., ‘The effects of permeable formwork on the surface properties of concrete’,Magazine of Concrete Research 43 (155) (1995) 93–104.

    Google Scholar 

  23. McCarthy, M.J. and Giannakou, A., ‘In-situ performance of CPF concrete in a coastal environment’,Cement and Concrete Research 32 (3) (2002) 451–457.

    Article  Google Scholar 

  24. Dhir, R.K., McCarthy, M.J., and McKenna, P.A., ‘Total Design Using Controlled Permeability Formwork’, Report to Department of the Environment, Transport and the Regions (March 2000).

  25. Bamforth, P.B. and Price, W.F., ‘Chloride ingress into marine structures: the effects of location, materials, curing and formwork’, in ‘Concrete 2000’, Proceedings of the International Conference, Dundee, Sept. 1993 (E&FN Spon 1993) 1105–1118.

  26. Vassie, P.R. and Calder, A., ‘Reducing chloride ingress to concrete bridges by impregnants’, in ‘Creating with Concrete: Controlling Concrete Degradation’, Proceedings of the International Congress (Eds. R.K. Dhir and M.D. Newlands), Dundee, Sept. 1999 (Thomas Telford, London, 1999) 133–147.

    Google Scholar 

  27. Dhir, R.K., Jones, M.R. and Gill, J.P., ‘Concrete surface treatment: effect of exposure temperature on chloride diffusion resistance’,Cement and Concrete Research 25 (1) (1995) 197–208.

    Article  Google Scholar 

  28. Broomfield, I., ‘Corrosion inhibitors for steel in concrete’,Concrete 33 (6) (1999) 44–47.

    Google Scholar 

  29. Collepardi, M., Fratesi, M., Mariconi, G., Coppola, L. and Corradetti, C., ‘Use of nitrite as corrosion inhibitor admixture in reinforced concrete structures immersed in seawater’, in ‘Admixtures for concrete—improvement of properties’, Proceedings of the International RILEM Symposium (Ed. Vázquez), Barcclona, 1990 (Chapman Hall, London, 1990) 279–288.

    Google Scholar 

  30. Lambert, P. and Shields, M.A., ‘Silane-based treatment of new and existing bridgeworks’, in ‘Surface Protection Treatment of Concrete Structures’, Proceedings of national seminar (Eds. R.K. Dhir and M.R. Jones), Dundee, 1992 (unpublished) 63–76.

  31. Trepanier, S.M., Hope, B.B. and Hansson, C.M., ‘Corrosion inhibitors in concrete. Part III. Effect on time to chloride-induced corrosion initiation and subsequent rates of steel in mortar’,Cement and Concrete Research 31 (2000) 715–718.

    Google Scholar 

  32. Price, W.F., ‘Controlled Permeability Formwork’, CIRIA Report C511 (London, 2000).

  33. Pallet, P.F., ‘Controlled Permeability Formwork’, British Cement Association, (London, 1993).

    Google Scholar 

  34. Basheer, P.A.M., Sha'at, A.A. and Long, A.E., ‘Controlled Permeability Formwork: Influence on carbonation and chloride ingress in concrete’, Proceedings of an International Conference (Eds. K. Sakai, N. Banthia and O.E. Gjørv), Sapporo, Japan,2 (E& FN Spon, London, 1995), 1205–1215.

    Google Scholar 

  35. Hewlett, P.C., Edmeades R.M. and Holdsworth, R.L., ‘Integral Waterproofers for Concrete. Cement Admixtures-Uses and Applications’, Chapter 5 (Ed. P.C. Hewlett) (Longman, London, 1988) 63–78.

    Google Scholar 

  36. Bamforth, P.B. and Pocock, D.C., ‘Minimising the risk of chloride induced corrosion by selection of concreting materials’ in ‘Corrosion of Reinforcement in Concrete’ (Eds. C.L. Page, K.W.J. Treadaway and P.B. Bamforth), (Elsevier, London, 1990) 119–131.

    Google Scholar 

  37. Aitkin, C.T. and Litvan, G.G., ‘Laboratory investigation of concrete scalers’,Concrete International 11 (4) (1989) 37–42.

    Google Scholar 

  38. Blight, G.E., ‘A study of four water-proofing systems for concrete’,Magazine of Concrete Research,43 (156) (1991) 197–203.

    Article  Google Scholar 

  39. Whiting, D., Ost, B., Nagi, M. and Cady, P., ‘Condition evaluation of concrete bridges relative to reinforcement corrosion’, Vol. 5, Methods for Evaluating the Effectiveness of Penetrating Sealants, Strategic Highways Research Programme (SHRP), (Washington DC, 1992).

    Google Scholar 

  40. El Jazairi, B. and Berke, N.S., ‘The use of calcium nitrate as a corrosion inhibiting admixture to steel reinforcement in concrete’, in ‘Corrosion of Reinforcement in Concrete’ (Eds. C.L. Page, K.W.J. Treadaway and P.B. Bamforth) (Elsevier, London, 1990) 571–585.

    Google Scholar 

  41. Berke, N.S. and Weil, T.G., ‘Worldwide review of corrosion inhibitors in concrete’, in ‘Advances in Concrete Technology’, Proceedings of CANMET/ACI Conference, Athens, 1992, 899–924.

  42. Hope, B.B. and Ip, A.K.C., ‘Corrosion inhibitors for use in concrete’,ACI Materials Journal 86 (6) (1989) 602–608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, M.J., Giannakou, A. & Jones, M.R. Comparative performance of chloride attenuating and corrosion inhibiting systems for reinforced concrete. Mat. Struct. 37, 671–679 (2004). https://doi.org/10.1007/BF02480512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480512

Keywords

Navigation