Skip to main content
Log in

British standard and RILEM water absorption tests: A critical evaluation

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

British Standard and RILEM capillary suction rate and water absorption tests used for clay bricks, stones and pre-cast concrete products are critically examined. Experimental data are reported comparing the initial rate of suction with the sorptivity, an analytically based method of measuring capillary suction rate. Experimental work is also reported comparing water contents attained as a result of vacuum saturation absorption and the British Standard 5 h boiling test. Results of 24 h and 30 min immersion tests are also reported.

It is concluded that the initial rate of suction test is fundamentally flawed and may produce misleading results because of its use of only a single point measurement. It is further concluded that vacuum saturation provides the most accurate measurement of water absorption, and therefore porosity. The 5 h boiling test generally produces results significantly below those obtained by vacuum saturation with samples attaining approximately 90% of vacuum saturation. Immersion tests, used to provide comparative data on the rates of absorption of different materials, can only be valid if the specimens have identical dimensions.

Résumé

Les essais de succion par capillarité et d'absorption d'eau basés sur la norme anglaise et sur la recommandation RILEM, utilisés pour les briques d'argiles, les pierres et les produits préfabriqués en béton sont examinés. Des données expérimentales sont présentées, en comparant le taux de succion initial et la sorptivité, une méthode analytique de mesure de la succion par capillarité. On rapporte également, quelques données expérimentales comparant les teneurs d'eau atteintes par absorption sous vide selon la norme anglaise après 5 heures d'ébullition. Les résultats des essais d'immersion de 24 heures et 30 minutes sont aussi présentés.

On conclut que l'essai de taux de succion initial est fondamentalement défectueux et peut produire des résultats trompeurs dus à l'utilisation d'un seul point de mesure. Il est aussi conclu que la plus précise des méthodes de mesure d'absorption d'eau, et par conséquent de la porosité, est celle de saturation sous vide. Le test de 5 heures d'ébullition donne des résultats proches de ceux obtenus par saturation sous vide pour des échantillons atteignant environ 90% de saturation de vide. Les essais d'immersion, utilisés pour obtenir des données comparatives sur les taux d'absorption de différent matériaux, ne sont valides que si les spécimens sont de dimensions identiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Standards Institution. British Standard specification for clay bricks. BS 3921, (1985).

  2. Prout, W. and Hoff, W. D., ‘Durability of Building Materials and Components’, Proceedings of the 5th International Conference, Brighton, (1990) 39–51.

  3. Gummerson, R. J., Hall, C. and Hoff, W. D., ‘Capillary water transport in masonry structures; building construction applications of Darcy's Law’,Construction Papers 1 (1980) 17–27.

    Google Scholar 

  4. Hall, C. and Kalimeris, A. N., ‘Water movement in porous building materials—V. Absorption and shedding of rain by building surfaces’,Bldg. Envir. 19 (1982) 13–20.

    Article  Google Scholar 

  5. Hall. C. and Kalimeris A. N., ‘Rain absorption and runoff on porous building surfaces’,Canadian Journal of Civil Engineering 11 (1984) 108–111.

    Article  Google Scholar 

  6. British Standards Institution. Pre-cast concrete flags, kerbs, channels, edgings and quadrants. Part 1: Specification. BS 7263, (1994).

  7. PAN 1: ‘Testing methods for natural stones’, in ‘RILEM Technical Recommendations for the Testing and Use of Construction Materials’, (E&FN Spon, London, 1994).

  8. LUM A5: Initial rate of suction (IRS) of masonry units.Ibid. in ‘RILEM Technical Recommendations for the Testing and Use of Construction Materials’, (E&FN Spon, London, 1994).

  9. LUM A4: Water absorption and water porosity of masonry units.Ibid. in ‘RILEM Technical Recommendations for the Testing and Use of Construction Materials’, (E&FN Spon, London, 1994).

  10. CPC 11.3. Absorption of water by immersion.Ibid. in ‘RILEM Technical Recommendations for the Testing and Use of Construction Materials’, (E&FN Spon, London, 1994).

  11. CPC 11.1: Absorption of water by concrete by immersion.Ibid. in ‘RILEM Technical Recommendations for the Testing and Use of Construction Materials’, (E&FN Spon, London, 1994).

  12. CPC 11.2: Absorption of water by concrete by capillarity.Ibid. in ‘RILEM Technical Recommendations for the Testing and Use of Construction Materials’, (E&FN Spon, London, 1994).

  13. Philip, J. R. ‘Theory of infiltration’,Advances in Hydroscience 5 (1969) 215–296.

    Google Scholar 

  14. Gummerson R. J., Hall, C. and Hoff, W. D., ‘Water movement in porous building materials—II. Hydraulic suction and sorptivity of brick and other masonry materials’,Bldg. Envir.,15, (1980) 101–108.

    Article  Google Scholar 

  15. Hall, C., ‘The water sorptivity of mortars and concretes: a review’,Mag. Concrete Res. 41 (1989) 51–61.

    Article  Google Scholar 

  16. Hall, C., Hoff, W. D. and Skeldon, M., ‘The sorptivity of brick: dependence on initial water content’,Journal of Physics D, Applied Physics 16 (1983) 1875–1880.

    Article  Google Scholar 

  17. Hall, C. and Kam Ming Tse, T., ‘Water movement in porous building materials—VII. The sorptivity of mortars’,Bldg. Envir. 21 (1986) 101–108.

    Google Scholar 

  18. Gummerson R. J., Hall, C. and Hoff, W. D., ‘The suction rate and sorptivity of brick’,Transactions and Journal of the British Ceramic Society 80 (1981) 150–152.

    Google Scholar 

  19. Reinhardt, H. W. (Ed.), ‘Penetration and permeability of concrete. Barriers to organic and contaminating liquids’, RILEM Report 16, (E&FN Spon, London, 1998).

    Google Scholar 

  20. Taylor, S. C., ‘A study of the liquid transport properties of cement-based materials’, PhD Thesis, UMIST, (1998).

  21. Hall, C., Hoff, W. D., Taylor, S. C., Wilson, M. A., Beom-Gi Yoon, Reinhardt, H. W., Sosoro, M., Meredith, P. and Donald, A. M., “Water anomaly in capillary absorption by cement-based materials’,Journal of Materials Science Letters 14 (1995) 1178–1181.

    Article  Google Scholar 

  22. Prout, W. ‘Studies of Frost Damage in Masonry’, PhD Thesis, UMIST, (1989).

  23. Washburn, E. W. and Footitt F. F., ‘Porosity: III. Water as an absorption liquid’,Journal of the American Ceramic Society 4 (1921) 527–537.

    Google Scholar 

  24. Peake, F. and Ford, R. W., ‘A comparison of the vacuum and boiling methods for measuring the water absorption of bricks’,Trans. J. Br. Ceram. Soc.,81 (1982) 160–162.

    Google Scholar 

  25. Hall, C., Hoff, W. D. and Prout, W., ‘Sorptivity—porosity relations in clay brick ceramic’,American Ceramic Society Bulletin 71 (1992) 1112–1116.

    Google Scholar 

  26. Building Research Establishment, ‘Selecting natural building stones’,BRE Digest 420 (1997).

  27. Ross, K. D. and Butlin, R. N., ‘Durability tests for building stone’, BRE Report BR 141, Garston, (1989).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. W. D. Hoff is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, M.A., Carter, M.A. & Hoff, W.D. British standard and RILEM water absorption tests: A critical evaluation. Mat. Struct. 32, 571–578 (1999). https://doi.org/10.1007/BF02480491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480491

Keywords

Navigation