Materials and Structures

, Volume 31, Issue 7, pp 480–486 | Cite as

Effects of carbonaceous particles and heavy metals on mortar-SO2 reactions

  • G. Zappia
  • C. Sabbioni
  • G. Gobbi
Scientific Reports


The effects of carbonaceous particles and heavy metals in the interaction between sulfur dioxide and mortars were investigated in a laboratory exposure system. Simulation experiments were carried out in a flow chamber where temperature, relative humidity and SO2 concentration were controlled. Samples of lime, pozzolan and cement mortars were exposed for 150 days in air with 3 ppm of SO2 concentration at 25°C and 95% RH. The mortar specimens were coated with three types of carbonaceous particles, collected at the emission points of three oil-fueled combustion sources, and, for comparison, with particles of active carbon, pure graphite, iron oxide and vanadium oxide. After exposure, the mortar samples were analyzed by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to identify the main chemical species, by ion chromatography (IC) to quantify SO 4 −− and SO 3 −− concentration and also by scanning electron microscope (SEM). The results show that the amount of SO 4 −− forming increases in the presence of carbonaceous particles and is related to their heavy metal content.


Gypsum Sulfite Soot Particle Cement Mortar Vanadium Oxide 


Nous avons étudié les effets des particules carbonées et des métaux lourds sur l'interaction entre le dioxyde de soufre et les mortiers, par un système d'exposition en laboratoire. Des simulations ont été menées dans un réacteur en contrôlant la température, l'humidité relative et la concentration en SO2. Des échantillons de mortier de chaux, de pouzzolane et de ciment ont été exposés pendant 150 jours dans une atmosphère ayant une concentration en SO2 de 3 ppm, à 25°C et à 95% d'humidité relative. Les échantillons de mortier ont été enduits de trois types de particules carbonées, provenant des points d'émission de trois sources de combustion à base de mazout, ainsi que, pour comparaison, des particules de charbon actif, de graphite pur, d'oxyde de fer et d'oxyde de vanadium. Après exposition, les échantillons de mortier ont été analysés par diffraction, aux rayons X (XRD) et par spectroscopie infrarouge à transformée de Fourier (FTIR), afin d'identifier les principales espèces chimiques; par chromatographie ionique (IC) afin de quantifier les concentrations en SO 4 −− et SO 3 −− ; et par microscopie électronique à balayage (SEM). Les résultats montrent que la quantité de SO 4 −− formée augmente en présence de particules carbonées et qu'elle est liée à leur teneur en métaux lourds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zappia, G., Sabbioni, C., Pauri, M.G. and Gobbi, G., ‘Mortar damage due to airborne sulfur compounds in simulation chamber’,Mater. Struct.,27 (1994) 469–473.CrossRefGoogle Scholar
  2. [2]
    Sabbioni, C. and Zappia, G., ‘Atmospheric-derived element tracers on damaged stone’,Sci. Total Environ. 126 (1992) 35–48CrossRefGoogle Scholar
  3. [3]
    Gauri, K.L. and Gwinn, J.A., Deterioration of marble in air containing 5–10 ppm SO2 and NO2’,Durab. Building Materials 1 (1982) 217–223.Google Scholar
  4. [4]
    Johansson, L.G., Lindqvist, O. and Mangio, R.E., ‘Corrosion of calcareous stones in humid air containing SO2 and NO2’,5 (1988) 439–449.Google Scholar
  5. [5]
    Hutchinson, A.J., Johnson, J.B., Thompson, G.E., Wood G.C., Sage, P.W. and Cooke, M.J., ‘The role of fly-ash particlate material and other catalysts in stone degradation’,Atmos. Environ. 26A (1992) 2795–2803.Google Scholar
  6. [6]
    Scholl, E. and Knöfel, D. ‘On the effect of SO2 and CO2 on cement pastes’,Cement and Concrete Research 21 (1991) 127–136.CrossRefGoogle Scholar
  7. [7]
    Del Monte, M., Sabbioni, C. and Vittori, O., ‘Airborne carbon particles and marble deterioration.Amos. Environ. 15 (1981) 645–652.CrossRefGoogle Scholar
  8. [8]
    Zappia, G., Sabbioni, C. and Gobbi G., ‘Non-carbonate carbon content on black and white areas of damaged stone monuments’,27A (1993) 1117–1121.Google Scholar
  9. [9]
    Sabbioni, C., Zappia, G. and Gobbi, G., ‘Carbonaceous particles and stone damage in a laboratory exposure system’,Journ. Geophysical Research 101 (1996) 19621–19627.CrossRefGoogle Scholar
  10. [10]
    Goldberg, E.. Black Particles in the Environment’, (John Wiley & Sons, New York, 1985).Google Scholar
  11. [11]
    Novakov, T., Chang, S.G. and Harker, A.B., ‘Sulfate as pollution particles: catalytic formation on carbon (soot) particles’,Science 186 (1974) 259–261.Google Scholar
  12. [12]
    Novakov, T., and Chang, S.G., ‘Catalytic oxidation of SO2 in droplets which contain soot particles’,AIChE Symposium Series 72, (1977) 255–261.Google Scholar
  13. [13]
    Chang, S.G., Toosi, R. and Novakov, T., ‘The importance of soot particles and nitrous acid in oxidizing SO2 in atmospheric aqueous droplets’,Atmos. Environ. 15 (1981) 1287–1292.CrossRefGoogle Scholar
  14. [14]
    Harrison, R.M. and Pio, C.A., ‘Kinetics of SO2 oxidation over carbonanceous particles in the presence of H2O, NH3 and O3’,17 (1983) 1261–1275.Google Scholar
  15. [15]
    Mamane, J. and Gottlieb, J., ‘The study of heterogeneous reactions of carbonaceous particles with sulfur and nitrogen oxides using a single particle approach’.J. Aerosol Sci. 20 (1989) 575–584.CrossRefGoogle Scholar
  16. [16]
    Grgic, I., Hudnik, V., Bizjak, M. and Levec, J., ‘Aqueous S(IV) oxidation-III. Catalytic effect of soot particles’,Atmos. Environ. 27A (1993) 1409–1416.Google Scholar
  17. [17]
    Chughtai, A.R., Brooks, M.E. and Smith, D.M., ‘Effect of metal oxides and black carbon (soot) on SO2/O2/H2O reaction systems.Aerosol Sci. Technol. 19 (1993) 121–132.Google Scholar
  18. [18]
    Sabbioni, C., ‘Contribution of atmospheric deposition to the formation of damage layers’,Sci. Total Environ. 167 (1995) 49–55.CrossRefGoogle Scholar
  19. [19]
    Barbaray, B., Contour, J.P. and Mouvier, G., ‘Sulfur dioxide oxidation over atmospheric aerosol. X-Ray photoelectron spectra of sulfur dioxide adsorbed on V2O5 and carbon’,Atmos. Environ. 11, (1977) 351–356.CrossRefGoogle Scholar

Copyright information

© RILEM 1998

Authors and Affiliations

  • G. Zappia
    • 1
    • 2
  • C. Sabbioni
    • 2
  • G. Gobbi
    • 1
  1. 1.Dip. Scienze dei Materiali e della TerraUniversità di AnconaItaly
  2. 2.Ist. FISBAT-CNRBolognaItaly

Personalised recommendations