Materials and Structures

, Volume 31, Issue 4, pp 259–266 | Cite as

Application of fiber Bragg grating in local and remote infrastructure health monitoring

  • Victor E. Saouma
  • Dana Z. Anderson
  • Keith Ostrander
  • Byeongha Lee
  • Volker Slowik
Scientific Reports


Developing uses for emerging fiber optic technology may help to manage the health of smart structures by providing an accurate strain profile and history of structural members. One specialty fiber optic application is the use of Bragg Gratings, which can measure pointwise the strain. First, practical application of this technology is reported. Next, the accuracy of Bragg Grated fibers was validated and a method to install the delicate fibers in a full size reinforced concrete beam was developed, both in the laboratory and in the field. Finally, remote sensing of the sensors through the Internet is explored.


Concrete Beam Fracture Process Zone Reinforce Concrete Beam Fiber Position Protective Tubing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Le développement d’utilisations pour la technologie émergeante des fibres optiques peut aider à gérer la santé des ouvrages en fournissant un profil précis des contraintes et l’historique des éléments structurels. L’une des applications spécialisées des fibres optiques est l’utilisation du réseau Bragg, qui peut mesurer la contrainte par points. L’application pratique de cette technologie est d’abord présentée. Ensuite, la précision des fibres du réseau Bragg a été validée et une méthode pour installer ces fibres délicates dans une poutre de béton renforcée de taille normale a été développée, en laboratoire et sur le site. Enfin, on discute de la détection à distance au moyen d’Internet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Rossi, P. and Le Maou, F., ‘New methods for detecting cracks in concrete using fiber optics’,Journal of Institution of Electronic and Radio Engineers 22 (November 1989) 437–442.Google Scholar
  2. [2]
    Ansari, F. and Chen, Q.Y., ‘Fiber-optic refractive-index sensor for use in fresh concrete’,Applied Optics 30 (28) (October 1991) 4056–4059.CrossRefGoogle Scholar
  3. [3]
    Nanni, A., Yang, C.C., Pan, K., Wang, J. and Michael, R., ‘Fiber optic sensors for concrete strain/stress measurement’,ACI Materials Journal 88 (3) (May–June 1991) 257–264.Google Scholar
  4. [4]
    Ansari, F. and Navalurkar, R., ‘Kinematics of crack formation in cementitious composites by fiber optics’,ASCE J. of Engineering Mechanics 119 (5) (May 1993) 1048–1061.CrossRefGoogle Scholar
  5. [5]
    Fuhr, P., Huston, D.R., Kajensky, P.J. and Ambrose, T.P., ‘Performance and health monitoring of the Stafford Medical Building using embedded sensors’,International Journal of Smart Materials and Structures, 1992.Google Scholar
  6. [6]
    Miesseler, H.-J. and Wolff, R., ‘Bauwerksbeobachtung mit lichtwellenleitern’, In ‘Internationales Symposium Zerstörungsfreie Prüfung im Bauwesen’, Berlin, 1991, 142–149.Google Scholar
  7. [7]
    Fuhr, P.L., Huston, D.R., Kajensky, P.J. and Snyder, D.M., ‘Curing and stress monitoring of concrete beams with embedded optical fiber sensors’,Journal of Structural Engineering, 1992.Google Scholar
  8. [8]
    Zimmerman, B.D. and Claus, R.O., ‘Spatially multiplexed optical fiber time domain sensors for civil engineering’, Technical report, FIMOD Corporation, Blacksburg, VA, 1993.Google Scholar
  9. [9]
    Rosseland, S., ‘Testing of fibre optic crack-detector in concrete’, In ‘Nordic Concrete Research’, Publication No. 8, Oslo, Norway, December 1989, Norske Betongforening.Google Scholar
  10. [10]
    Wolff, R., ‘Applications with optical fiber sensor system for monitoring prestressed concrete structures’,Structures Congress Abstract, ASCE (1990) 94–95.Google Scholar
  11. [11]
    Koester, M. and Wolff, R., in ‘Proceedings of the International Workshop on Dam Safety’, Switzerland, 1993.Google Scholar
  12. [12]
    Narendran, N., Shukla, A. and Letcher, S.V., ‘Determination of fracture parameters using embedded fiber-optic sensors’,Experimental Mechanics 3(4) (1991) 360–365.CrossRefGoogle Scholar
  13. [13]
    Kim, K., Kollar, L. and Springer, G., ‘A model of embedded fiber optic fabry-perot temperature and strain sensors’,J. of Composite Materials 27(17) (1993) 1618–1662.Google Scholar
  14. [14]
    Klink, T., Meissner, J. and Slowik, V., ‘Dehnungsmessung an einer spannbetonbruecke mit faser-bragg-gitter-sensoren’, Technical report, Internal report HTWK Leipzig, Germany, 1997.Google Scholar
  15. [15]
    Ostrander, K., ‘Applications of fiber optics in strain measurements of structures’, Master’s thesis, University of Colorado, Dept. Civ. Eng, Boulder, CO, U.S.A., May 1996.Google Scholar
  16. [16]
    Melle, S.M., Liu, K. and Measures, R., ‘Practical fiber-optic bragg grating strain gauge system’,Applied Optics, (July 1993) 3601–3609.Google Scholar
  17. [17]
    Kersey, A.D., Berkoff, T.A. and Morey, W.W., ‘Multiplexed fiber bragg grating strain sensor system with a fiber fabry-perot wavelength filter’,Optics Letter 18 (16) (1993) 1370–1372.CrossRefGoogle Scholar

Copyright information

© RILEM 1998

Authors and Affiliations

  • Victor E. Saouma
    • 1
  • Dana Z. Anderson
    • 2
  • Keith Ostrander
    • 3
  • Byeongha Lee
    • 4
  • Volker Slowik
    • 5
  1. 1.Department of Civil EngineeringUniversity of ColoradoBoulder
  2. 2.Physics DepartmentUniversity of ColoradoBoulder
  3. 3.Civil EngineeringUniversity of ColoradoBoulder
  4. 4.PhysicsUniversity of ColoradoBoulder
  5. 5.Department of Civil EngineeringHTWK Leipzig (FH)LeipzigGermany

Personalised recommendations