Advertisement

Materials and Structures

, Volume 31, Issue 3, pp 203–208 | Cite as

Influence of hydraulic pressure in fracture mechanics modelling of crack propagation in concrete

  • Ulf Ohlsson
  • Mikael Nyström
  • Thomas Olofsson
  • Knut Waagaard
Scientific Reports

Abstract

This paper presents a nonlinear fracture mechanics analysis of a part of an offshore concrete structure. The analysis focuses on the risk of cracking between the prestressing ducts in the shaft of the submerged platform. The influences of water and grout pressure in prestressing ducts have been taken into consideration.

The analysis has been performed using both discrete and smeared crack analysis.

Keywords

Water Pressure Load Case Interface Element Fracture Process Zone Softening Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Cet article présente une analyse de la mécanique de rupture non-linéaire d'une partie d'un ouvrage en béton offshore. L'analyse se centre sur le risque de fissuration entre les conduits de précontrainte dans le puits de la plate-forme submergée. Les influences de la pression de l'eau et du coulis dans les conduits de précontrainte ont été prises en considération.

Des analyses de fissuration discrète et de bande microfissurée ont été réalisées.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Waagaard, K., Egeland, S., Askheim, D. and Johansen, H., ‘The application of non-linear FE analysis for capacity prediction of offshore concrete structures’, in Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka Japan, April 10–15, 1994, 624, 615, 582, 669 pp. (ISBN 1-880653-10-9).Google Scholar
  2. [2]
    Waagaard, K. and Langberg, L., ‘Independent verification, of the Draugen deepwater concrete platform’, inIbid. Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka Japan, April 10–15, 1994, 624, 615, 582, 669 pp. (ISBN 1-880653-10-9).Google Scholar
  3. [3]
    Hillerborg, A., Modéer, M. and Petersson, P-E., ‘Analysis of crack formation, and crack growth in concrete by means of fracture mechanics and finite elements’Cement and Concrete Research 6 (1976) 773–782.CrossRefGoogle Scholar
  4. [4]
    Elfgren, L., Editor, ‘Fracture Mechanics of Concrete Structures. From theory to applications’ (Chapman and Hall, London 1989) 407 pp (ISBN 0 412-30680-8).Google Scholar
  5. [5]
    Bažant, Z. P. Editor, ‘Fracture Mechanics of Concrete Structures’, Proceedings of the Conference Fram CoS 1, Breckenridge, USA, (Elsevier, England, 1992) 999 pp (ISBN 1 85166 869 1).Google Scholar
  6. [6]
    Noghabai, K., Ohlsson, U. and Olofsson, T., ‘Bond properties of high-strength concrete’, in ‘Utilization of High Strength Concret’ Proceedings of the Conference High-Strength Concrete 1993, Lillehammer, Norway (Edited by Ivar Holand and Erik Sellevold, Norwegian Concrete Association, Oslo, Norway 1993) 1169–1176 (ISBN 82-91341-00-1).Google Scholar
  7. [7]
    Noghabai, K., ‘Splitting of Concrete in the Anchoring Zone of Deformed Bars. A Fracture Mechanics Approach to Bond’, Licentiate Thesis 1995:27 L, Division of Structural Engineering, Luleå University of Technology, Luleå 1995, 131+46 pp. (ISRN HLU-TH-L—1995/26-L—SE.).Google Scholar
  8. [8]
    Ohlsson, U., ‘Fracture Mechanics Analysis of Concrete Structures’, Division of Structural Engineering, Luleå University of Technology, Doctoral Thesis 1995: 179 D, December 1995, 94 pp. (ISSN 0348-8373, ISRN HLU-TH-T— 179-D—SE).Google Scholar
  9. [9]
    Wittmann, F. H., Editor, ‘Fracture Mechanics of Concrete Structures’, Proceedings of the Conference Fram CoS 2, Zurich, Switzerland (AEDIFICATIO, Germany, 1995) 1597 pp (ISBN 3-905088-12-6, set of three volumes).Google Scholar
  10. [10]
    van Mier, J. G. M., ‘Numerical modelling and determination of fracture mechanics parameters for concrete and rock: Introduction’, in ‘Fracture Mechanics of Concrete Structures’,Ibid. 1601–1609. (ISBN 3-905088-15-0, volume 3).Google Scholar
  11. [11]
    Visset, J. H. M. and van Mier, J. G. M., ‘Tensile hydraulic fracture of concrete and rock’ inIbid. 261–270 (ISBN 3-905088-13-4, volume 1).Google Scholar
  12. [12]
    Brühwiler, E. and Saouma, V.E., ‘Water fracture interaction in concrete-Part 1: Fracture Properties’,ACI Materials Journal (May–June 1995) 296–303.Google Scholar
  13. [13]
    Tschegg, E., Kreuzer, H. and Zelezny, M., ‘Fracture in concrete under biaxial loading-Numerical evaluation of wedge splitting test results’ Proceedings of FramCoS 1, Breckendridge, USA, Edited by Z. P. Bažant (Elsevier, England, 1992) 999 pp (ISBN 1 85166 869 1).Google Scholar
  14. [14]
    CEB-Comité Euro-Interational du Béton. CEB-FIP Model Code 1990, Chapters 1–5, Bulletin d'Information No 195, Chapters 6–14. Bulletin d'Information No 196, Lausnne 1990.Google Scholar

Copyright information

© RILEM 1998

Authors and Affiliations

  • Ulf Ohlsson
    • 1
  • Mikael Nyström
    • 2
  • Thomas Olofsson
    • 1
  • Knut Waagaard
    • 3
  1. 1.Department of Civil and Mining EngineeringLuleå University of TechnologySweden
  2. 2.Ericsson Erisoft ABLuleåSweden
  3. 3.Det Norske Veritas Industri Norge A SNorway

Personalised recommendations