Invertebrate Neuroscience

, Volume 3, Issue 2–3, pp 103–116 | Cite as

A new approach to insect-pest control—combination of neurotoxins interacting with voltage sensitive sodium channels to increase selectivity and specificity

  • Dalia Gordon
Articles from the ICINN 97 Conference Neurotoxins and Channel Blockers


Voltage-sensitive sodium channels are responsible for the generation of electrical signals in most excitable tissues and serve as specific targets for many neurotoxins. At least seven distinct classes of neurotoxins have been designated on the basis of physiological activity and competitive binding studies. Although the characterization of the neurotoxin receptor sites was predominantly performed using vertebrate excitable preparations, insect neuronal membranes were shown to possess similar receptor sites. We have demonstrated that the two mutually competing antiinsect excitatory and depressant scorpion toxins, previously suggested to occupy the same receptor site, bind to two distinct receptors on insect sodium channels. The latter provides a new approach to their combined use in insect control strategy. Although the sodium channel receptor sites are topologically separated, there are strong allosteric interactions among them. We have shown that the lipid-soluble sodium channel activators, veratridine and brevetoxin, reveal divergent allosteric modulation on scorpion α-toxins binding at homologous receptor sites on mammalian and insect sodium channels. The differences suggest a functionally important structural distinction between these channel subtypes. The differential allosteric modulation may provide a new approach to increase selective activity of pesticides on target organisms by simultaneous application of allosterically interacting drugs, designed on the basis of the selective toxins. Thus, a comparative study of neurotoxin receptor sites on mammalian and invertebrate sodium channels may elucidate the structural features involved in the binding and activity of the various neurotoxins, and may offer new targets and approaches to the development of highly selective pesticides.

Key Words

neurotoxin sodium channel allosteric interaction scorpion toxin insect toxin 

Abbreviations of scorpion venom toxins


toxins 1-3 and insect toxin (IT) from AaH-the North African scorpionAndroctonus australis Hector

BjIT1, IT2

Bj-the Israeli black scorpionButhotus judaicus

LqhIT2, LqhαIT

Lqh-the Israeli yellow scorpionLeiurus quinquestriatus hebraeus

Lqq V, IT1, IT2

Lqq-the African scorpionLeiurus quinquestriatus quinquestriatus


Bom-the African scorpionButhus occitanus mordochei


δ-conotoxin TxVI from the marine Cone snailConus textile


Ts-the Brazilian scorpionTityus serrulatus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baden, D. G. (1989) Brevetoxins: unique polyether dinoflagellate toxins.FASEB J.,3, 1807–1817.PubMedGoogle Scholar
  2. Bloomquist, J. R. (1996). Ion channels as targets for insecticides,Annu. Rev. Entomol.,41, 163–190.PubMedCrossRefGoogle Scholar
  3. Catterall, W. A. (1986). Voltage-dependent gating of sodium channels: correlating structure and function.Trends Neurosci,9, 7–10.CrossRefGoogle Scholar
  4. Catterall, W. A. (1992) Cellular and molecular biology of voltagegated sodium channels.Physiol. Rev., Suppl.,72(4), S15-S48.Google Scholar
  5. Cestèle, S., Ben Khalifa, R., Pelhate, M., Rochat, H. and Gordon, D. (1995) α-Scorpion toxins binding on rat brain and insect sodium channels reveal divergent allosteric modulations by brevetoxin and veratridine.J. Biol. Chem.,270, 15153–15161.PubMedCrossRefGoogle Scholar
  6. Cestèle, S., Sampieri, F., Rochat, H. and Gordon, D. (1996) Tetrodotoxin reverses brevetoxin allosteric inhibition of scorpion alpha-toxin binding on rat brain sodium channels.J. Biol. Chem.,271, 18329–18332.PubMedCrossRefGoogle Scholar
  7. Church C. J., and Knowles, C. O. (1993) Relationship between pyrethroid enhanced batrachotoxinin A 20-α-benzoate binding and resistant tobacco budworm mothsHeliothis virescens.Comp. Biochem. Physiol.,104C(2), 279–287.Google Scholar
  8. Couraud, F., Jover, E., Dubois, J.-M. and Rochat, H. (1982) Two types of scorpion toxin receptor siters, one related to the activation, the other to the inactivation of the action potential sodium channel.Toxicon,20, 9–16.PubMedCrossRefGoogle Scholar
  9. Dianous, S., Kopeyan, C., Bahraoui, E. M. and Rochat, H. (1987) Purification of contracture-inducing insect toxins from Buthinae scorpion venoms by immunoaffinity and high pressure liquid chromatography.Toxicon,25, 731–741.PubMedCrossRefGoogle Scholar
  10. Dong, K. Scott, J. G. and Weiland, G. A. (1993) [3H]Batrachotoxinin A-20-α-benzoate binding in synaptosomes from susceptible andkdr-type resistant German cockroaches,Blattella germanica (L.),Pesticide Biochem. Physiol.,46, 141–148.CrossRefGoogle Scholar
  11. Dufton, M. J., and Rochat, H. (1984). Classification of scorpions toxins according to amino acid composition and sequence.J. Mol. Evol.,20, 120–127.PubMedCrossRefGoogle Scholar
  12. Eitan, M., Fowler, E., Herrmann, R., Duval, A., Pelhate, M. and Zlotkin, E. (1990). A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action.Biochem.,29, 5941–5947.CrossRefGoogle Scholar
  13. Fainzilber, M., Kofman, O., Zlotkin, E. and Gordon, D. (1994) A new neurotoxin receptor site on sodium channels in identified by a conotoxin that affects sodium channel inactivation in molluscs, and acts as an antagonist in rat brain.J. Biol. Chem.,269(4), 2574–2580.PubMedGoogle Scholar
  14. Fainzilber, M., Lodder, H., Kits, K. S., Kofman, O., Vinnitsky, I., Van Reitschoten, J., Zlotkin, E. and Gordon, D. (1995) A new conotoxin affecting sodium current inactivation interacts with the δ-conotoxin receptor site.J. Biol. Chem.,270, 1123–1129.PubMedCrossRefGoogle Scholar
  15. Gordon, D., Moskowitz, H., Eitan, M., Warner, C., Catterall, W. A., and Zlotkin, E. (1992) Localization of receptor sites for insectselective toxins on sodium channels by site-directed antibodies.Biochem.,31, 7622–7628.CrossRefGoogle Scholar
  16. Gordon, D. (1997) Sodium channels as targets for neurotoxins: mode of action and interaction of neurotoxins with receptor sites on sodium channels. In:Toxins And Signal Transduction, ed. P. Lazarowici and Y. Guttman, pp 119–149. Amsterdam: Harwood Press.Google Scholar
  17. Gordon, D., and Zlotkin, E. (1993) Binding of an alpha scorpion toxin to insect sodium channels is not dependent on membrane potential.FEBS Lett.,315, 125–129.PubMedCrossRefGoogle Scholar
  18. Gordon, D., Jover, E., Couraud, F. and Zlotkin, E. (1984) The binding of an insect selective neurotoxin (AaIT) from scorpion venom to locust synaptosomal membranes.Biochim. Biophys. Acta,778, 349–358.CrossRefGoogle Scholar
  19. Gordon, D., Savarin, P., Gurevitz, M. and Zinn-Justin, S. (1998) Functional analtomy of scorpion toxins affecting sodium chaneles.J. Toxicol. Toxin Rev. 17 A(2) (in press).Google Scholar
  20. Gordon, D., Martin-Eauclaire, M. F., Cestèle, S., Kopeyan, C., Carlier, E., Ben Khalifa, R., Pelhate, M. and Rochat, H. (1996) Scorpton toxins affecting sodium current inactivation bind to distinct homologous receptor sites on rat brain and insect sodium channels.J. Biol. Chem.,271, 8034–8045.PubMedCrossRefGoogle Scholar
  21. Gordon, D., Merrick, D., Wollner, D. A. and Catterall, W. A. (1988) Biochemical properties of sodium channels in a wide range of excitable tissues sturied with site-directed antibodies.Biochem.,27, 7032–7038.CrossRefGoogle Scholar
  22. Gordon, D., Moskowitz, H. and Zlotkin, E. (1990) Sodium channel polypeptides in central nervous systems of various insects identified with site-directed antibodies.Biochim. Biophys. Acta,1026, 80–86.PubMedCrossRefGoogle Scholar
  23. Gordon, D., Zlotkin, E. and Catterall, W. A. (1985) The binding of an insect selective neurotoxin and saxitoxin to insect neuronal membranes.Biochim. Biophys. Acta,821, 130–136.CrossRefGoogle Scholar
  24. Herrmann, R., Moskowitz, H., Zlotkin, E. and Hammock, B. (1995) Positive cooperativity among insecticidal scorpion neurotoxins.Toxicon,33, 1099–1102.PubMedCrossRefGoogle Scholar
  25. Lester, D., Lazarovici, P., Pelhate, M. and Zlotkin, E. (1982) Purification, characterization and action of two insect toxins from the venom of the scorpionButhotus judaicus.Biochem. Biophys. Acta,701, 370–381.Google Scholar
  26. Lima, M. E., Martin, M.-F., Diniz, C. R. and Rochat, H. (1986) Tityus serrulatus toxin VII bears pharmacological properties of both β-toxin and insect toxin from scorpion venoms.Biochem. Biophys. Res. Commun.,139, 296–302.PubMedCrossRefGoogle Scholar
  27. Lima, M. E., Martin-Eaulaire, M. F., Hue, B., Loret, E., Diniz, C. R. and Rochat, H. (1989) On the binding of two scorpion toxins to the central nervous system of the cockroachPeriplaneta americana.Insect Biochem.,19, 413–422.CrossRefGoogle Scholar
  28. Loughney, K., Kreber, R. and Ganetzky, B. (1989) Molecular analysis of thepara locus, a sodium channel gene inDrosophila.Cell.,58, 1143–1154.PubMedCrossRefGoogle Scholar
  29. Martin-Eauclaire, M. F., and Couraud, F. (1995) Scorpion neurotoxins: Effects and mechanisms. InHandk. Neurotoxicology, ed. L. W. Chang R. S. Dyer, pp 683–716. New York: Marcel Dekker.Google Scholar
  30. Martin-Eauclaire, M. F., Delabre, M. L., Céard, B., Ribeiro, A. M., Sogaard, M, Svensson, B., Diniz, C.R., Smith, L.A., Rochat, H. and Bougis, P. E. (1992) Genetics of scorpion toxins. InRecent Advances in Toxinology Research, ed. P. Gopalakrishnakone and C. K. Tan, Vol. 1, pp 196–209. National University of Singapore, Singapore: Venom and Toxin Research Group.Google Scholar
  31. Miranda, F., Kopeyan, C., Rochat, H., Rochat, C. and Lissitzky, S. (1970) Purification of animal neurotoxins. Isolation and characterization of eleven neurotoxins from the venoms of the scorpionAndroctonus australis Hector,Buthus occitanus tunetanus, and Leiurus quinquestriatus quinquestriatus.Eur. J. Biochem.,16, 514–523.PubMedCrossRefGoogle Scholar
  32. Moskowitz, H., Herrmann, R., Zlotkin, E. and Gordon, D. (1994) Variability among insect sodium channels revealed by binding of selective neurotoxins.Insect Biochem. Molec. Biol.,24, 13–19.CrossRefGoogle Scholar
  33. Moskowitz, H., Zlotkin, E. and Gordon, D. (1991) Solubilization and characterization of the insect neuronal sodium channel.Neurosci Lett.,124, 148–152.PubMedCrossRefGoogle Scholar
  34. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. and Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain.Nature (London),320, 188–192.CrossRefGoogle Scholar
  35. Pauron, D., Barhanin, J. & Lazdunski, M. (1985) The voltagedependent Na+ channel of insect nervous system identified by receptor sites for tetrodotoxin, and scorpion and sea anemone toxins.Biochem. Biophys. Res. Commun.,131, 1226–1233.PubMedCrossRefGoogle Scholar
  36. Pelhate, M., and Sattelle, D. B. (1982) Pharmacological properties of insect axons: a review.J. Insect Physiol.,28, 889–903.CrossRefGoogle Scholar
  37. Pelhate, M., and Zlotkin, E. (1982) Actions of insect toxin and other toxins derived from the venom of the scorpionAndroctonus australis on the isolated giant axons of the cockroach (Periplaneta ameriocana).J. Exp. Biol.,97, 67–71.PubMedGoogle Scholar
  38. Possani, L. D. (1984) Structure of scorpion toxins, InInsect, Poisons, Allergens and Other Invertebrate Venoms, ed. T. Tu.Handk. Nat. Toxins 2, 513–550.Google Scholar
  39. Rochat, H., Bernad, P. and Couraud, F. (1979) Scorpion toxins: Chemistry and mode of action. InAdvances in Cytopharmacology, ed. B. Caccarelli and F. Clementi, vol. 3, pp. 325–334. New York, Raven Press.Google Scholar
  40. Sautière, P., Cestèle, S., Kopeyan, C., Martinage, A., Drobecq, H., Doljansky, Y. and Gordon, D. (1998) New toxins acting on sodium channels from the scorpionLeiurus quinquestriatus hebraeus suggest a clue to mammalian versus insect selectivity.Toxicon (in press).Google Scholar
  41. Shichor, I., Fainzilber, M., Pelhate, M., Malecot, C. O., Zlotkin, E. and Gordon, D. (1996) Interactions of δ-conotoxins with alkaloid neurotoxins reveal differences between the silent and effective binding sites on voltage-sensitive sodium channels.J. Neurochem.,67, 2451–2460.PubMedCrossRefGoogle Scholar
  42. Soderlund, D. M. and Bloomquist, J. R. (1989) Neurotoxic actions of pyrethroid insecticides.Annu. Rev. Entomol.,34, 77–96.PubMedCrossRefGoogle Scholar
  43. Soderlund, D. M., Bloomquist, J. R., Ghiasudkin, S. and Stuart, A. (1987) Enhancement of veratridine-enhancement of sodium channel activation by pyrethroids and DDT analogs. InSites of Action for Neurotoxic Pesticides. ACS Symp. Ser, ed. R. Hollingworth and M. Green, Vol. 356, pp 251–261. Ame. Chem. Soc: Washington DC.Google Scholar
  44. Stankiewicz, M., Ben Khalifa, R., Grolleau, F., Tomaszewski, R., Kadziela, W. and Pelhate, M. (1996) Late sodium current induced by scorpion toxins and pyrethroid insecticides in insect neuronal membrane. InPhysiology and Ecotoxicology of Insects and Mechanisms of Adaptation in Vertebrates, ed. Z. Bargiel, Vol. 4, pp. 93–102. Torun, Poland: Scientific Society of Torun.Google Scholar
  45. Strichartz, G., Rando, T. and Wang G. K. (1987) An integrated view of the molecular toxicology of sodium channel gating in excitable cells.Annu. Rev. Neurosci.,10, 237–267.PubMedCrossRefGoogle Scholar
  46. Thomsen, W. J., and Catterall, W. A. (1989) Localization of the receptor site for α-scorpion toxins by antibody mapping Implications for sodium channel topology.Proc. Natl. Acad. Sci. USA,86, 10161–10165.PubMedCrossRefGoogle Scholar
  47. Trainer, V. L., McPhee, J. C., Boutelet-Bochan, H., Baker. C., Scheuer, T., Babin, D., Demoute, J. P., Guedin, D. and Catterall, W. A. (1997) high affinity binding of pyrethroids to the α subunit of brain sodium channels.Mol. Pharmacol.,51, 651–657.PubMedGoogle Scholar
  48. Watt, D. D., and Simard, J. M. (1984) Neurotoxic proteins in scorpion venom.J. Toxicol.,3, 181–221.Google Scholar
  49. Zilberberg, N., Gordon, D., Pelhate, M., Adams, M. E., Norris, F., Zlotkin, E. and Gurevitz, M. (1996) Functional expression and genetic modification of an alpha scorpion neurotoxin.Biochem.,35, 10215–10222.CrossRefGoogle Scholar
  50. Zilberberg, N., Froy, O., Loret, E., Cestèle, S., Arad, D., Gordon, D. and Gurevitz, M. (1997) Identification of structural elements of a scorpion α-neurotoxin important for receptor site recognition.J. Biol. Chem. 272, 14810–14816.PubMedCrossRefGoogle Scholar
  51. Zlotkin, E. (1988) Neurotoxins. InComparative Invertebrate Neurochemistry, ed. G. G. Lunt and R. W. Olsen, pp. 256–324. London: Croom Helm.Google Scholar
  52. Zlotkin, E. (1997) Insect selective neurotoxins from scorpion venoms affecting sodium conductance. InToxins and Signal Transduction, ed. P. Lazarowici and Y. Gutman, pp 95–117. Cellular And Molecular Mechanisms of Toxin Action Series, Amsterdam: Harwood Press.Google Scholar
  53. Zlotkin, E., Kadouri, D., Gordon, D., Pelhate, M., Martin, M. F., and Rochat, H. (1985) An excitatory and a depressant insect selective toxin from scorpion venom both affect sodium conductance and possess a common binding site.Arch. Biochem. Biophys.,240, 877–887.PubMedCrossRefGoogle Scholar
  54. Zlotkin, E., Miranda, F. and Rochat, H. (1978) Chemistry and pharmacology of Buthinae scorpion venoms. InArthropods Venoms, ed. S. Bettini, pp 317–369. New York: Springer-Verlag.Google Scholar
  55. Zlotkin, E., Eitan, M., Bindokas, V., Adams, M. E., Moyer, M., Brukhart, W. and Fowler, E. (1991) Functional duality and structural uniqueness of depressant insect-selective neurotoxins.Biochem.,30, 4814–4820.CrossRefGoogle Scholar

Copyright information

© Sheffield Academic Press 1997

Authors and Affiliations

  1. 1.Department d'Ingenierie et d'Etudes des ProteinesCEAGif-sur-YvetteFrance

Personalised recommendations