Materials and Structures

, Volume 35, Issue 10, pp 603–613 | Cite as

Characterization of the development of microstructure and porosity of cement-based materials by numerical simulation and ESEM image analysis

  • G. Ye
  • J. Hu
  • K. van Breugel
  • P. Stroeven
Article

Abstract

This paper describes the characterization of the development of the microstructure and porosity of cement-based materials simulated with a numerical model and compares the results with those obtained from environment scanning electron microscopy (ESEM) images. The numerical cement hydration model HYMOSTRUC is used to simulate the 3D microstructure of cement paste. The geometrical and topological properties of porous media are derived by applying a serial sectioning algorithm with an overlapping creterion. The stereological estimation of ESEM image is used to characterize the morphological changes of microstructure during the cement hydration process. The characteristic parameters simulated by the model and obtained from experiments are compared to one another. The influence of different w/c ratios,i.e. from 0.3 to 0.6, different finenesses of cement particles, 210 m2/kg, 420 m2/kg and 600 m2/kg, and different lengths of curing period are investigated. The potential application of this simulated 3D microstructure on the transport properties being studied by applying a network permeability model. The capillary transport is considered in this model.

Keywords

Hydration Product Cement Hydration Calcium Silicate Hydrate Cement Particle Hydration Time 

Résumé

Cet article décrit la caractérisation du développement de la microstructure et de la porosité des matériaux ciment-basés simulés avec un modèle numérique et compare les résultats à ceux obtenus à partir des images de la microscopie électronique d' environnement (ESEM). Le modèle numérique HYMOSTRUC d'hydration de ciment est employé pour simuler la microstructure 3D de la pâte de ciment. Les propriétés géométriques et topologiques des matériaux poreux sont dérivées appliquant un algorithme de sectionnement séquentiel avec un critère superposant. L'évaluation stéréoplogique de l'image d'ESEM est employée pour caractériser les changements morphologiques de la microstructure pendant le processus d'hydration de ciment. Les paramètres caractéristiques simulés par le modèle et obtenus à partir des expériences sont comparés l'un à l'autre. L'influence de différentes rapports aux/ciment, c'est-à-dire de 0,3 à 0,6, différentes finesses des particules de ciment, 210 m2/kg, 420 m2/kg et 600 m2/kg, et différentes durées de la période traitante sont étudiées. L'application potentielle de cette microstructure 3D simulée sur les propriétés de transport est étudiée en appliquant un modèle de perméabilité à réseau. Le transport capillaire est considéré dans ce modèle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bentz, D. P., Mizell, S., Satterfield, S., Devaney, J., George, W., Ketcham, P., Graham, J., Porterfield, J., Quenard, D., Vallee, F., Sallee, H., Boller, E. and Baruchel, J., ‘The Visible Cement Data Set’,Journal of Research of the National Institute of Standards and Technology 107 (2) (2002) 137–148.Google Scholar
  2. [2]
    Jennings, H., Kropp, J. and Scrivener, K., ‘The modelling of microstructure and its potential for studying transport properties and durability’, Saint, France, 1994.Google Scholar
  3. [3]
    Jennings, H.M., and Johnson, S.K., ‘Simulation of microstructure development during the hydration of a cement compound’,Journal of American Ceramic Society 69 (1986) 790–795.CrossRefGoogle Scholar
  4. [4]
    Navi, P. and Pignat, C., ‘Simulation of cement hydration and the connectivity of the capillary pore space’,Advanced Cement Based Material 4 (1996) 58–67.Google Scholar
  5. [5]
    Navi, P. and Pignat, C., ‘Three-dimensional characterization of the pore structure of a simulated cement paste’,Cement and Concrete Research 29 (4) (1999) 507–514.CrossRefGoogle Scholar
  6. [6]
    Stroeven, M., ‘Discrete numerical modelling of composite materials’, PhD thesis, Delft University of Technology, Delft, 1999.Google Scholar
  7. [7]
    Bentz, D.P. and Garboczi, E.J., ‘A digitised simulation model for microstructural development’, Advances in Cementitious Materials, edited by S. Mindess, Westerville, Ohio, USA, American Ceramic Society, (1989) 211–226.Google Scholar
  8. [8]
    Bentz, D.P., ‘Three-dimensional computer simulation of Portland cement hydration and microstructure development’,Journal of the American Ceramic Society 80 (1) (1997) 3–21.CrossRefGoogle Scholar
  9. [9]
    Bentz, D.P. and Gardoczi, E.J., ‘Percolation of phases in a three-dimensional cement paste microstructural model’,Cement and Concrete Research 21 (1991) 324–344.Google Scholar
  10. [10]
    Van Breugel, K., ‘Simulation of hydration and formation of structure in hardening cement-based materials’, PhD thesis, Delft University of Technology, Delft, 1991.Google Scholar
  11. [11]
    Koenders, E.A.B., ‘Simulation of volume changes in hardening cement-based materials’, PhD thesis, Delft University of Technology, Delft, 1997.Google Scholar
  12. [12]
    Ye, G., van Breugel, K. and Fraaij, A.L.A., ‘Three-dimensional microstructure analysis of numerically simulated cementitious materials’, Accepted for publication inCement and Concrete Research, 2002.Google Scholar
  13. [13]
    Underwood, E.E., ‘Quantitative Stereology’, Addison-Wesley Publishing Company, New Jersey, 1968.Google Scholar
  14. [14]
    Garboczi, E.J., Bentz, D.P. and Martys, N.S., ‘Digital images and computer modelling’, in Experimental Methods for Porous Media, edited by P.-z. Wong, Academic Press, New York, 1999.Google Scholar
  15. [15]
    Uwins, P.J.R., ‘Environmental scanning electron microscopy’,Materials Forum 18 (1994) 51–75.CrossRefGoogle Scholar
  16. [16]
    Olson, R.A., Neubauer, C.M. and Jennings, H.M., ‘Damage to the pore structure of hardened Portland cement paste by mercury intrusion’,Journal of American Ceramic Society 80 (9) (1997) 2454–2458.CrossRefGoogle Scholar
  17. [17]
    Bisschop, J. and van Mier, J. G. M., ‘Environmental scanning electron microscopy as tool to study shrinkage microcracks in cement-based materials’, in Proc. of MRS 1999 Fall Meeting “Adance in Materials Problem Solving with the Electron Microcope”, Editors: Bently, J., Dahmen, U., Allen, C. and Petrov, I., Boston, vol. 589 (Materials Research Society, 2000) 141–146.Google Scholar
  18. [18]
    Scrivener, K.L., ‘The use of backscattered electron microscopy and image analysis to study the porosity of cement paste’, in Proc. of Material Research Society Symposium,137 (1989) 129–140.Google Scholar
  19. [19]
    Lange, D.A., Jennings, H.M. and Shah, S.P., ‘Image analysis techniques for characterization of pore structure of cement-based materials’,Cement and Concrete Research 24 (5) (1994) 841–853.CrossRefGoogle Scholar
  20. [20]
    Lokhorst, S.J., ‘Deformational Behaviour of Concrete Influenced by Hydration-related Changes of the Microstructures’, Research Report, Delft University of Technology, 1998.Google Scholar

Copyright information

© RILEM 2002

Authors and Affiliations

  • G. Ye
    • 1
  • J. Hu
    • 1
  • K. van Breugel
    • 1
  • P. Stroeven
    • 1
  1. 1.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftthe Netherlands

Personalised recommendations