An alternative to ratio method in sample surveys

  • T. Srivenkataramana
  • D. S. Tracy


This paper examines a simple transformation which enables the use of product method in place of ratio method. The convenience with the former, proposed by Murthy [3], is that expressions for bias and mean square error (mse) can be exactly evaluated. The optimum situation in the minimum mse sense and allowable departures from this optimum are indicated. The procedure requires a good guess of a certain parameter, which does not seem very restrictive for practice. Two methods for dealing with the bias of the estimator are mentioned. An extension to use multiauxiliary information is outlined.

Key words and phrases

Probability sampling design ratio and product methods of estimation bias mean square error interpenetrating subsamples simple random sampling 

AMS subject classification

Primary 62 D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Goodman, L. A. (1960). On the exact variance of products,J. Amer. Statist. Ass.,55, 708–713.MATHCrossRefGoogle Scholar
  2. [2]
    Murthy, M. N. and Nanjamma, N. S. (1959). Almost unbiased ratio estimates based on interpenetrating subsample estimates,Sankhyã,21, 381–392.MATHMathSciNetGoogle Scholar
  3. [3]
    Murthy, M. N. (1964). Product method of estimation,Sankhyã, A,26, 69–74.MATHMathSciNetGoogle Scholar
  4. [4]
    Murthy, M. N. (1967).Sampling Theory and Methods, Statistical Publishing Society, Calcutta.Google Scholar
  5. [5]
    Olkin, I. (1958). Multivariate ratio estimation for finite populations,Biometrika,45, 154–165.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Quenouille, M. H. (1956). Notes on bias in estimation,Biometrika,43, 353–360.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Rao, P. S. R. S. and Mudholkar, G. S. (1967) Generalized multivariate estimator for the mean of finite populations,J. Amer. Statist. Ass.,62 1009–1012.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Reddy, V. N. (1978) A study on the use of prior knowledge on certain population parameters in estimation,Sankhyã, C,40, 29–37.MATHGoogle Scholar
  9. [9]
    Shukla, N. D. (1976). Almost unbiased product-type estimator.Metrika,23, 127–133.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Srivenkataramana, T. and Srinath, K. P. (1976). A modification of the product estimator in simple random sampling.Vignana Bharathi,2, 56–60.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1980

Authors and Affiliations

  • T. Srivenkataramana
    • 1
  • D. S. Tracy
    • 1
  1. 1.University of WindsorWindsorCanada

Personalised recommendations