Covariance matrix computation of the state variable of a stationary Gaussian process

  • Hirotugu Akaike


Covariance Matrix Canonical Correlation Analysis ARMA Model Recursive Computation Stationary GAUSSIAN Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akaike, H. (1974). Markovian representation of stochastic processes and its application to the analysis of autoregressive moving-average processes,Ann. Inst. Statist. Math.,26, 363–387.MATHMathSciNetGoogle Scholar
  2. [2]
    Akaike, H. (1976). Canonical correlation analysis of time series and the use of an information criterion, InSystem Identification: Advances and Case Studies, R. K. Mehra and D. G. Lainiotis, eds., Academic Press, New York, 27–96.Google Scholar
  3. [3]
    Akaike, H., Kitagawa, G., Arahata, E. and Tada, F. (1979). TIMSAC-78,Computer Science Monographs, No. 11, The Institute of Statistical Mathematics, Tokyo.Google Scholar
  4. [4]
    Kitagawa, G. (1977). On a search procedure for the optimal AR-MA order,Ann. Inst. Statist. Math.,29, B, 319–332.MATHGoogle Scholar
  5. [5]
    Morf, M., Sidhu, G. S. and Kailath, T. (1974). Some new algorithms for recursive estimation in constant, linear, discrete-time systems,IEEE Trans. Automat. Contr., AC-19, 315–323.MATHCrossRefGoogle Scholar
  6. [6]
    Szaraniec, E. (1973). Stability, instability and aperiodicity tests for linear discrete systems,Automatica,9, 513–516.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1978

Authors and Affiliations

  • Hirotugu Akaike

There are no affiliations available

Personalised recommendations