The asymptotic expansion of the distribution of Anderson's statistic for testing a latent vector of a covariance matrix

  • Takesi Hayakawa


Covariance Matrix Probability Density Function Asymptotic Expansion Latent Root Latent Vector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, T. W. (1963). Asymptotic theory for principal component analysis,Ann. Math. Statist.,34, 122–148.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Kshirsagar, A. M. (1961). The goodness-of-fit of a single (non-isotropic) hypothetical principal component,Biometrika,48, 397–407.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Lawley, D. N. (1956). Tests of significance for the latent roots of covariance and correlation matrices,Biometrika,43, 128–136.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Mallows, C. L. (1961). Latent vectors of random symmetric matrices,Biometrika,48, 133–149.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Nagao, H. (1973). On some test criteria for covariance matrix,Ann. Statist.,1, 700–709.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Sugiura, N. (1973). Derivatives of the characteristic root of a symmetric or a Hermitian matrix with two applications in multivariate analysis,Commun. Statist.,1, 393–417.MathSciNetMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1978

Authors and Affiliations

  • Takesi Hayakawa

There are no affiliations available

Personalised recommendations