Skip to main content
Log in

Relative blood damage index of the jellyfish valve and the Bjork-Shiley tilting-disk valve

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Determination of the potential for blood cell damage induced by artificial heart valves is essential in deciding the suitability of the valve for clinical use. Both the magnitude and the duration of the shear stress influence the onset and severity of the damage to the constitutents of blood. In this study, in vitro shear stress measurements of the mitral jellyfish and Bjork-Shiley tilting-disk (mono) prosthetic valves under physiological pulsatile flow conditions were conducted. The data indicate that elevated levels of shear stress occurred mainly 1D downstream from both valves. With the aid of a mathematical model and using the elevated shear stress data, the relative release of hemoglobin by damaged red blood cells and of lactate dehydrogenase by platelets was computed for both valves. For the operating conditions examined, the jellyfish valve was found to cause the least damage to blood, with a relative blood damage index of 0.27 against a value of 0.47 for the Bjork-Shiley valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradient. Circ Res 1968;22:165–197

    PubMed  CAS  Google Scholar 

  2. Leverett LB, Hellums JD. Red blood cell damage by shear stress. Biophy J 1972;12:257–273

    Article  CAS  Google Scholar 

  3. Stein PD, Sabbah HN. Fluid stresses, platelets and bioprosthetic valves. Proceedings of the 37th ACEMB Conference, California, USA, 1984;144

  4. Stein PD, Sabbah HN. Measured turbulence and its effect upon thrombus formation. Circ Res 1974;35:608–614

    PubMed  CAS  Google Scholar 

  5. Sallam AM, Hwang, NHC. Turbulent strain rate and red blood cell haemolysis. Proceedings of the 36th ACEMB Conference, Ohio, USA, 1983;80

  6. Yoganathan AP, Corcoran WH. In vitro velocity measurements in the near vicinity of the Bjork-Shiley aortic prosthesis using a laser Doppler anemometer. Med Biol Eng Comput 1979;17:453–459

    Article  PubMed  CAS  Google Scholar 

  7. Yoganathan AP, Reamer HH, Corcoran WH, Harrison EC, Shulman IA, Parnassus W. The Starr-Edwards aortic ball valve: flow characteristics, thrombus formation, and tissue overgrowth. Artif Organs 1981;5:6–17

    PubMed  CAS  Google Scholar 

  8. Tillman W, Reul H. In vitro wall shear stress measurements of aortic valve prosthesis. J Biomech 1984;4:263–279

    Article  Google Scholar 

  9. Einav S, Reul H, Rau G, Elad D. Shear stress related blood damage along the cusp of a tri-leaflet prosthetic valve. Int J Artif Organs 1991;14:716–720

    PubMed  CAS  Google Scholar 

  10. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs 1990;13:300–306

    PubMed  CAS  Google Scholar 

  11. Hanle DD, Harrison EE, Yoganathan AP. In vitro flow dynamics of four prosthetic valves: comparative analysis. J. Biomech 1989;22:597–607

    Article  PubMed  CAS  Google Scholar 

  12. Imachi K, Fujmasa WD. A newly designed jellyfish valve for an artificial heart blood pump. Trans Am Soc Artif Intern Organs 1988;34:726–728

    CAS  Google Scholar 

  13. Imachi K, Mabuchi K, Chinzei T, Abe Y, Imanishi K, Yonezawa T. Fabrication of a jellyfish valve for use in an artificial heart. Trans Am Soc Artif Intern Organs 1992;38:M237-M242

    CAS  Google Scholar 

  14. Imachi K, Mabuchi K, Chinzei T, Abe Y, Imanishi K, Suzukawa M, Yonezawa T, Kouno A. Blood compatibility of the jellyfish valve without anticoagulant. Trans Am Soc Artif Intern Organs 1991; 37:M220-M222

    CAS  Google Scholar 

  15. Imachi K, Mabuchi K, Chinzei T, Abe Y, Imanishi K, Yonezawa T, Maeda K. In vitro and in vivo evaluation of jellyfish valve for practical use. Trans Am Soc Artif Intern Organs 1989;35:298–301

    CAS  Google Scholar 

  16. Sakhaeimanesh AA, Morsi YS, Tansley GD. In vitro steady flow velocity and shear stress measurements in the vicinity of a jellyfish valve. Proceedings of the Twelfth Australasian Fluid Mechanics Conference, 1995;2:887–890

    Google Scholar 

  17. Morsi YS, Kogure M, Umezu M. In vitro laser Doppler anemometry of pulsatile flow velocity and shear measurements downstream from a jellyfish valve in the mitral position of a ventricular assist device. J Artif Organs 1999;2:62–73

    Article  Google Scholar 

  18. Umezu M, Akutsu T. Ventricular assist device with built-in trileaflet polyurethane valves. Proceedings of the 2nd International Symposium on Artificial Heart and Assist Devices, 1998;149–155

  19. Chandran KB, Khalighi B. A note on the blood analog for in-vitro testing of heart valve bioprostheses. J Biomech Eng 1984;106:112–114

    Article  PubMed  CAS  Google Scholar 

  20. Chandran KB, Cabell GN, Khalighi B, Chen CJ. Pulsatile flow past aortic valve bioprostheses in a model human aorta. J Biomech 1984;17:609–619

    Article  PubMed  CAS  Google Scholar 

  21. Giersiepen M. Laser Doppler Anemometrie in pulsatiler Stromuny (thesis). Aachen: RWTH Aachen, Faculty of Mechanical Engineering.

  22. Nygaard H, Giersiepen J, Hasenkam M, Westphal D, Paulsen PK, Reul H. Estimation of turbulent shear stresses in pulsatile flow immediately downstream of two artificial aortic valves in vitro. J Biomech 1990;23:1231–1238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yos Morsi PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsi, Y., Kogure, M. & Umezu, M. Relative blood damage index of the jellyfish valve and the Bjork-Shiley tilting-disk valve. J Artif Organs 2, 163–169 (1999). https://doi.org/10.1007/BF02480061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480061

Key words

Navigation