Skip to main content
Log in

The atomic force microscope: a new tool for artificial organ research

  • Advanced Science for Artificial Organ Research: Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The atomic force microscope (AFM) was developed by modifying the scanning tunneling microscope (STM). It has high resolution on the subnanometer scale (10−10 m), does not require troublesome preprocessing of the sample, and permits observation of living samples. With these attractive features, the AFM is expected to be a new research tool in the field of artificial organs in the near future. This review describes the history and mechanism of the AFM and some of our observations of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig G, Rohrer H, Gerber Ch, Weibel E. 7×7 reconstruction on Si(111) resolved in real space. Phys Rev Let 1983;50:120–123

    Article  CAS  Google Scholar 

  2. Binnig G, Quate CF, Gerber C. Atomic force microscopy. Phys Rev Let 1986;56:930–933

    Article  Google Scholar 

  3. Zachee P, Snauwaert J, Vandenberche P, Hellemans L, Boogaerts M. Imaging red blood cells with the atomic force microscope. Br J Haematol 1996;95:472–481

    PubMed  CAS  Google Scholar 

  4. Zhang PC, Bai C, Huang YM, Zhao H, Fang Y, Wang NX, Li Q. Atomic force microscopy study of fine structures of the entire surface of red blood cells. Scanning Microsc 1995;9:981–988

    PubMed  CAS  Google Scholar 

  5. Argaman M, Golan R, Thomson NH, Hansma HG. Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucl Acids Res 1997;25:4379–4384

    Article  PubMed  CAS  Google Scholar 

  6. Hansma HG, Laney DE, Bezanilla M, Sinsheimer RL, Hansma PK. Applications for atomic force microscopy of DNA. Biophys J 1995;68:1672–1677

    PubMed  CAS  Google Scholar 

  7. Vesenka J, Manne S, Yang G, Bustamante CJ, Henderson E. Humidity effects on atomic force microscopy of gold-labeled DNA on mica. Scanning Microsc 1993;7:781–788

    PubMed  CAS  Google Scholar 

  8. Shaiu WL, Larson DD, Vesenka J, Henderson E. Atomic force microscopy of oriented linear DNA molecules labeled with 5 nm gold spheres. Nucl Acids Res 1993;21:99–103

    PubMed  CAS  Google Scholar 

  9. Lyubchenko YL, Gall AA, Shlyakhtenko LS, Rodney E. Atomic force microscopy imaging of double standard DNA and RNA. J Biomol Struct Dynam 1992;10:589–606

    CAS  Google Scholar 

  10. Yoshida K, Yoshimoto M, Sasaki K, Ohnishi T, Ushiki T, Hitomi J, Yamamoto S, Shigeno M. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate. Biophys J 1998;74:1654–1657

    PubMed  CAS  Google Scholar 

  11. Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Shinsheimer RL, Elings V, Bustamante C, Hansma PK. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 1992;256:1180–1183

    PubMed  CAS  Google Scholar 

  12. Shaiu WL, Larson DD, Vesenka J, Henderson E. Atomic force microscopy of oriented linear DNA molecules labeled with 5 nm gold spheres. Nucl Acids Res 1993;21(1):99–103

    PubMed  CAS  Google Scholar 

  13. Kasas S, Gotzos V, Celio MR. Observation of living cells using the atomic force microscope. Biophys J 1993;64:539–544

    PubMed  CAS  Google Scholar 

  14. Grimellec CL, Lesniewska E, Giocondi MC, Finot E, Vie V, Goudonnet JP. Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J 1998;75:695–703

    PubMed  Google Scholar 

  15. Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA 1997;94:316–321

    Article  PubMed  CAS  Google Scholar 

  16. Kuznetsov TG, Malkin AJ, McPherson A. Atomic force microscopy studies of living cells: visualization of motility, division, aggregation, transformation, and apoptosis. J Struct Biol 1997;120:180–191

    Article  PubMed  CAS  Google Scholar 

  17. Nagayama S, Morimoto M, Kawabata K, Fujito Y, Ogura S, Abe K, Ushiki T, Ito E. AFM observation of three-dimensional fine structural changes in living neurons. Bioimages 1996;4(3):111–116

    Google Scholar 

  18. Schaus SS, Henderson ER. Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscope. Biophys J 1997;73:1205–1214

    PubMed  CAS  Google Scholar 

  19. Schoenenberger CA, Hoh JH. Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J 1994;67:929–936

    PubMed  CAS  Google Scholar 

  20. Kasas S, Ikai A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 1995;68:1678–1680

    PubMed  CAS  Google Scholar 

  21. Allen S, Chen X, Davis J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ, Sefton J, Tendler SJB, Williams PM. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 1997;36:7457–7463

    Article  PubMed  CAS  Google Scholar 

  22. Willemsen OH, Snel MME, van der Werf KO, Grooth BG, Greve J, Hinterdorfer P, Gruber HJ, Schindler H, Kooyk Y, Figdor CG. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J 1998; 75:2220–2228

    PubMed  CAS  Google Scholar 

  23. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 1996;93:3477–3481

    Article  PubMed  CAS  Google Scholar 

  24. Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Guntherodt HJ. Specific antigen/antibody interactions measured by force microscopy. Biophys J 1996;70:2437–2441

    PubMed  CAS  Google Scholar 

  25. Stuart JK, Hlady V. Reflection interference contrast microscopy combined with scanning force microscopy verifies the nature of protein-ligand interaction force measurements. Biophys J 1999;76:500–508

    PubMed  CAS  Google Scholar 

  26. Florin EL, Moy VT, Gaub HE. Adhesion force between individual ligand-receptor pairs. Science 1994;264:415–417

    PubMed  CAS  Google Scholar 

  27. Lee GU, Kidwell DA, Colton RJ. Sensing discrete streptavidinbiotin interactions with atomic force microscopy. Langmuir 1994; 10:354–357

    Article  CAS  Google Scholar 

  28. A-Hassan E, Heintz WF, Antonik MD, D'Costa NP, Nageswaran S, Schoenenberger CA, Hoh JH. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 1998;74:1564–1578

    PubMed  CAS  Google Scholar 

  29. Almqvist N, Backman L, Fredriksson S. Imaging human erythrocyte spectrin with atomic force microscope. Micron 1994;25(3): 227–232

    Article  PubMed  CAS  Google Scholar 

  30. Takeuchi M, Miyamoto H, Sako Y, Komizu H, Kusumi A. Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J 1998;74:2171–2183

    PubMed  CAS  Google Scholar 

  31. Okamoto H, Kanno M, Ohta Y, Okuda T. Imaging of the spectrin network of red blood cell by an atomic force microscope. Third World Congress of Biomechanics 1998:488

  32. Putman CAJ, Grooth BG, Hansma PK, Hulst NF, Greve J. Immunogold labels: cell-surface markers in atomic force microscopy. Ultramicroscopy 1993;48:177–182

    Article  CAS  Google Scholar 

  33. Thimonier J, Montixi C, Chauvin P, He HT, Rocca-Serra J, Barbet J. Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electrom microscope. Biophys J 1997;73:1627–1632

    Article  PubMed  CAS  Google Scholar 

  34. Ohta Y, Okamoto H, Kanno M, Okuda T. Morphological changes of sheep red blood cell by loading with shear stress: imaging by atomic force microscope in nanometer scale. Int J Artif Organs 1998;21:598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ohta DEng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, Y., Okamoto, H., Okuda, T. et al. The atomic force microscope: a new tool for artificial organ research. J Artif Organs 2, 131–134 (1999). https://doi.org/10.1007/BF02480055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480055

Key words

Navigation