Skip to main content
Log in

Advances in wound dressings and cultured skin substitutes

  • Hybrid Artificial Organs: Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Clark RAF. Cutaneous tissue repair; basic biological considerations [1]. J Am Acad Dermatol 1985;13:701–725

    PubMed  CAS  Google Scholar 

  2. Clark RAF. Overview and general considerations of would repair. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of would repair. New York: Plenum Press, 1988;3–33

    Google Scholar 

  3. Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962;193:293–294

    Article  PubMed  CAS  Google Scholar 

  4. Tavis MJ, Thornton JW, Bartlett RH, Roth JC, Woodroof EA. A new composite skin prosthesis. Burns 1980;7:123–130

    Article  Google Scholar 

  5. Yannas IV Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res 1980;14:107–131

    Article  PubMed  CAS  Google Scholar 

  6. Burke JF, Yannas IV, Quinby WC, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981;194:413–428

    PubMed  CAS  Google Scholar 

  7. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 1982;215:174–176

    PubMed  CAS  Google Scholar 

  8. Heimbach D, Luterman A, Burke JF, Cram A, Herndon D Hunt J, Jordan M, McManus W, Solem L, Warden G, Zawacki B. Artificial dermis for major burns: a multi-center randomized clinical trial. Ann Surg 1988;208:313–320

    PubMed  CAS  Google Scholar 

  9. Suzuki S, Matsuda K, Isshiki N, Tamada Y, Ikada Y. Experimental study of a newly developed bilayer artificial skin. Biomaterials 1990;11:356–360

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki S, Matsuda K, Isshiki N, Tamada Y, Yoshioka K, Ikada Y. Clinical evaluation of a new bilayer artificial skin composed of collagen sponge and silicone layer. Br J Plast Surg 1990;43:47–54

    Article  PubMed  CAS  Google Scholar 

  11. Koide M, Osaki K, Konishi J, Oyamada K Katakura T, Takahashi A. A new type of biomaterial for artificial skin: dehydrothermally cross-linked composites of fibrillar and denatured collagen. J Biomed Res 1993;27:79–87

    Article  CAS  Google Scholar 

  12. Gray DT, Pine RW, Harnar TJ, Marvin JA, Engrav LH, Heimbach DM. Early surgical excision versus conventional therapy in patients with 20 to 40 percent burns: a comparative study. Am J Surg 1982;144:76–80

    Article  PubMed  CAS  Google Scholar 

  13. Engrav LH, Heimbach DM, Reus JL, Harnar TJ, Marvin JA. Early excision and grafting vs. non-operative treatment of burns of indetermine depth: a randomized prospective study. J Trauma 1983;23:1001–1004

    PubMed  CAS  Google Scholar 

  14. Tompkins RG, Burke JF, Schoenfield DA, Bondoc CC, Quinby WC, Behringer GC, Ackroyd FW. Prompt eschar excision: a treatment system contributing to reduced burn mortality. Ann Surg 1986;204:272–281

    PubMed  CAS  Google Scholar 

  15. Heimbach DM. Early burn excision and grafting. Surg Clin North Am 1987;67:93–107

    PubMed  CAS  Google Scholar 

  16. Tompkins RG Remensnyder JP, Burke JF, Tomkins DM, Hilton JF, Schoenfeld DA, Behringer GE, Bondoc CC, Briggs SE, Quinby WC, Significant reductions in mortality for children with burn injuries through the use of prompt eschar excision. Ann Surg 1988;208:577–585

    PubMed  CAS  Google Scholar 

  17. Herndon DN, Barrow RE, Rutan RL, Rutan TC Desai MH, Abston SY. A comparison of conservative versus early excision therapy in severely burned patients. Ann Surg 1989;209:547–552

    PubMed  CAS  Google Scholar 

  18. Kuroyanagi Y, Kim E, Shioya N Evaluation of synthetic wound dressing capable of releasing silver sulfadiazine. J Burn Care Rehabil 1990;11:106–115

    Google Scholar 

  19. Kuroyanagi Y, Kim E, Kenmochi M, Ui K, Kageyama H, Nakamura M, Takeda A, Shioya N. A silver sulfadiazine impregnated synthetic wound dressing composed of poly-L-leucine spongy matrix. J Appl Biomater 1992;3:153–161

    Article  PubMed  CAS  Google Scholar 

  20. Matsuda K, Suzuki N, Isshiki N, Yoshioka K, Okada T, Hyon S-H, Ikada Y. A bilayer “artificial skin” capable of sustained release of an antibiotic. Br J Plast Surg 1991;44:1142–1146

    Article  Google Scholar 

  21. Matsuda K, Suzuki S, Isshiki N Yoshioka K, Wada R, Hyon S-H, Ikada Y. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotic. Biomaterials 1992;13:119–122

    Article  PubMed  CAS  Google Scholar 

  22. Kuroyanagi Y, Shiraishi A, Shirasaki Y, Nakakita N, Yasutomi Y, Takano Y, Shioya N. Development of new wound dressing with antimicrobial delivery capability. Wound Repair Regen 1994;2; 122–129

    Article  PubMed  CAS  Google Scholar 

  23. Kuroyanagi Y, Kageyama H, Shioya N, Oohara A, Mikawa T. Development of new wound dressing composed of silver sulfadiazine-impregnated polyurethane membrane laminated with a non-woven fabric: fundamental studies. Jpn Pharmacol Ther 1995;23:25–35

    Google Scholar 

  24. Kuroyanagi Y, Shioya N, Nakakita N, Nakamura M, Takahashi H, Yasutomi Y, Ishihara S, Kim E, Kageyama H, Matsukura T, Sato A, Nakajima H, Anze M, Ikezawa Y, Moori S, Ichiyama S, Kageyama M, Hara M, Wada H, Okano E, Ogino K. Development of new wound dressing composed of silver sulfadiazine-impregnated polyurethane membrane laminated with a non-woven fabric: multi-center's clinical reports. Jpn Pharmacol Ther 1995; 23:383–408

    Google Scholar 

  25. Green H. Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell 1978;15:801–811

    Article  PubMed  CAS  Google Scholar 

  26. Marcelo CL. Differential effects of cAMP and cGMP on in vitro epidermal cell growth. Exp Cell Res 1979;120:201–210

    Article  PubMed  CAS  Google Scholar 

  27. Kageyama H, Kuroyanagi Y. Pre-clinical experiment of hyaluronic acid spongy sheet: the effect of a synthetic antithrombin agent. Wounds 1995;7:220–227

    Google Scholar 

  28. Shibata H, Shioya N, Kuroyanagi Y Development of new wound dressing composed of spongy collagen sheet containing dibutyryl cyclic AMP. J Biomater Sci Polymer Edn 1997;8:601–621

    CAS  Google Scholar 

  29. Inoue M, Ono I, Tateshita T, Kuroyanagi Y, Shioya N. Effect of a collagen matrix containing epidermal growth factor on wound contraction. Wound Repair Regen 1998;6:213–222

    Article  PubMed  CAS  Google Scholar 

  30. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331–343

    Article  PubMed  CAS  Google Scholar 

  31. Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell 1975; 6:317–330

    Article  PubMed  CAS  Google Scholar 

  32. Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 1977;265:421–424

    Article  PubMed  CAS  Google Scholar 

  33. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 1979;76:5665–5668

    Article  PubMed  CAS  Google Scholar 

  34. O'Connor NE, Muliken JG, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet, 1981;1:75–78

    Article  Google Scholar 

  35. Gallico GG, O'Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984;311:448–451

    Article  PubMed  Google Scholar 

  36. Cuono CB, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1986;1:1123–1124

    Article  PubMed  CAS  Google Scholar 

  37. Cuono CB, Langdon R, Birchall N, Barttelbort S, McGuire J. Composite autologous-allogeneic skin replacement: development and clinical application. Plast Reconstr Surg 1987;80:626–635

    Article  PubMed  CAS  Google Scholar 

  38. Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O'Connor NE. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. Lab Invest 1989;60:600–612

    PubMed  CAS  Google Scholar 

  39. Gallico GG, O'Connor NE, Compton CC. Cultured epithelial autografts for giant congenital nevi. Plast Reconstr Surg 1989;84:1–9

    PubMed  Google Scholar 

  40. De Luca M, Albanese E, Bondanza S, Megna M, Ugozzoli L, Molina F, Cancedda R, Santi PL, Bormioli M, Stella M, Magliacani G. Multicenter experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns 1989;15:303–309

    Article  PubMed  Google Scholar 

  41. Munster AM, Weiner SH, Spence RJ. Cultured epidermis for the coverage of massive burn wounds: a single center experience. Ann Surg 1990;211:676–680

    PubMed  CAS  Google Scholar 

  42. Teep RGC, Kreis RW, Koebrugge EJ, Kempenaar JA, Vloemans AFPM, Hermans RP, Boxma H, Dokter J, Hermans J, Ponec M, Vermeer BJ. The use of cultured autologous epidermis in the treatment of extensive burn wounds. J Trauma 1990;30:269–275

    Google Scholar 

  43. Donati L, Magliacani G, Bormioli M, Signorini M, Preis FWB Clinical experiences with keratinocyte grafts. Burns 1992;18:s19-s26

    Article  PubMed  Google Scholar 

  44. Odessey R. Multicenter experience with cultured epidermal autograft for treatment of burns. J Burn Care Rehabil 1992;13:174–180

    PubMed  CAS  Google Scholar 

  45. Rue LW, Cioffi WG, McManus WF, Pruitt BA. Wound closure and outcome in extensively burned patients treated with cultured autologous keratinocytes. J Trauma 1993;34:662–668

    PubMed  Google Scholar 

  46. Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil 1993;14:653–662

    PubMed  CAS  Google Scholar 

  47. Kumagai N, Matsuzaki K, Fukushi S, Tanabe M, Oshima H, Ishida H. Grafting of autologous cultured epithelium after excision of tattoos. Ann Plast Surg 1994;33:385–391

    PubMed  CAS  Google Scholar 

  48. Kumagai N. Grafting of autologous and allogeneic cultured epithelium after excision of tattoos. Eur J Plast Surg 1994;17:312–315

    Article  Google Scholar 

  49. Kumagai N, Fukushi S, Matsuzaki K, Ishida H. Treatment of nevus of Ota with autologous cultured epithelium grafting combined with dermabrasion. Ann Plast Surg 1995;34:180–186

    PubMed  CAS  Google Scholar 

  50. Hefton JM, Madden MR, Finkelstein JL, Shres GT. Grafting of burn patients with allografts of cultured epidermal cells. Lancet 1983;2:428–430

    Article  PubMed  CAS  Google Scholar 

  51. Madden MR, Finkelstein JL Staiano-Coico L, Goodwin CW, Shires GT, Nolan EE, Hefton JM. Grafting of cultured allogeneic epidermis on second-and third-degree burn wounds on 26 patients. J Trauma 1986;26:955–962

    Article  PubMed  CAS  Google Scholar 

  52. Phillips TJ, Kehinde O, Green H, Gilchrest BA. Treatment of skin ulcers with cultured epidermal allografts. J Am Acad Dermatol 1989;21:191–199

    Article  PubMed  CAS  Google Scholar 

  53. Teepe RGC, Koebrugge EJ, Ponec M, Vermeer BJ. Fresh versus cryopreserved cultured allografts for the treatment of chronic skin ulcers. Br J Dermatol 1990;12:81–89

    Article  Google Scholar 

  54. Burt AM, Pallet CD, Sloane JP, O'Hare MJ, Schafler KF, Yardeni P, Eldad A, Clarke KA, Gusterson BA. Survival of cultured allografts in patients with burns assessed with a probe specific for Y chromosome. BMJ 1989;298:915–917

    PubMed  CAS  Google Scholar 

  55. Brain A, Purkis P, Coates P, Hackett M, Navsaria H, Leight I Survival of cultured allogeneic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome. BMJ 1989;298:917–919

    Article  PubMed  CAS  Google Scholar 

  56. Rennekampff HO Kiessig V, Loomis W, Hansbrough JF. Growth peptide release from biologic dressings a comparison. J Burn Care Rehabil 1996;17:522–527

    PubMed  CAS  Google Scholar 

  57. Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure and contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 1979;76:1274–1278

    Article  PubMed  CAS  Google Scholar 

  58. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 1981;211:1052–1054

    PubMed  CAS  Google Scholar 

  59. Bell E, Ehrlich HP, Sher S, Merrill C, Sarber R, Hull B Nakatsuji T, Church D. Development and use of a living skin equivalent. Plast Reconstr Surg 1981;67:386–392

    PubMed  CAS  Google Scholar 

  60. Bell E, Sher S, Hull B, Merrill C, Rosen S, Chamson A, Asselineau D, Dubertret L, Coulomb B, Lapiere C, Nusgens B, Neveux Y. The reconstitution of living skin. J Invest Dermatol 1983;81:s2-s10

    Article  Google Scholar 

  61. Parenteau N, Naughton G. Skin: the first tissue-engineered products. Sci Am April 1999:59–61

  62. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 1991;12:243–248

    Article  PubMed  CAS  Google Scholar 

  63. Hansbrough JF, Christine D, Hansbrough WB. Clinical trials of a living dermal tissue replacement placed beneath meshed, splitthickness skin grafts on excised burn wounds. J Burn Care Rehabil 1992;13:519–529

    PubMed  CAS  Google Scholar 

  64. Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, Steed DP, Lipkin S. Use of Dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 1996;19:350–354

    PubMed  CAS  Google Scholar 

  65. Hansbrough JF Morgan J, Greenleaf G. Development of a temporary living skin replacement composed of human fibroblasts cultured in BiobraneR, a synthetic dressing material. Surgery 1994; 115:633–644

    PubMed  CAS  Google Scholar 

  66. Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD. Clinical trials of a biosynthetic temporary skin replacement. Dermagraft-Transitional Coverage, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 1977;18:43–51

    Google Scholar 

  67. Kuroyanagi Y, Kenmochi M, Ishihara S, Takeda A, Shiraishi A, Ootake N, Uchinuma E, Torikai K, Shioya N. A cultured skin substitute composed of fibroblasts and keratinocytes with a collagen matrix: preliminary results of clinical trials. Ann Plast Surg 1993;31:340–349

    PubMed  CAS  Google Scholar 

  68. Yamada N, Shioya N, Kuroyanagi Y. An evaluation of allogeneic cultured dermal substitute composed of fibroblasts within a spongy collagen matrix as a wound dressing. Scand J Plast Reconstr Surg 1995;29:211–219

    CAS  Google Scholar 

  69. Tanaka M, Nakakita N, Kuroyanagi Y. Allogeneic cultured dermal substitute composed of spongy collagen containing fibroblasts: evaluation in animal test. J Biomater Sci Polymer Edn 1999;10:433–453

    CAS  Google Scholar 

  70. Yamashita R, Kuroyanagi Y, Nakakita N, Uchinuma E, Shioya N. Allogeneic cultured dermal substitute composed of spongy collagen containing fibroblasts: preliminary clinical trials. Wounds 1999;11:34–44

    Google Scholar 

  71. Yamada N, Uchinuma E, Kuroyanagi Y. Clinical evaluation of an allogeneic cultured dermal substitute composed of fibroblasts within a spongy collagen matrix. Scand J Plast Reconstr Surg 1999; 33:1–8

    Article  Google Scholar 

  72. Bell E, Rosenberg M. The commercial use of cultivated human cells. Transplant Proc 1990;22:971–974

    PubMed  CAS  Google Scholar 

  73. Cooper ML, Andree C, Hansbrough JF, Zapata Sirvent RL, Spielvogel RL. Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol 1993;101:811–819

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroyanagi, Y. Advances in wound dressings and cultured skin substitutes. J Artif Organs 2, 97–116 (1999). https://doi.org/10.1007/BF02480051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480051

Key words

Navigation