Skip to main content
Log in

Feasibility of warable artificial kidney using presently commercially availble hollow-fiber membrane

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

On the assumption that continuous treatment is effective in preventing β2-microglobulin deposition in a patient without kidney function, a wearable artificial kidney device was theoretically designed on the basis of using presently commercially available hollow-fiber membrane for hemodialysis. The device was assumed to be connected between an arteriole and a large vein. The device, with an optimal dimension consisting of the membrane with an appropriate filtration permeability, was capable of carrying out continuous hemofiltration using the blood pressure of the patient only and of preventing β2-microglobulin deposition. If dialysate was fed into the device for an appropriate time every day, concentrations of urea nitrogen and creatinine were also maintained at a lower level than that of conventional intermittent hemodialysis. Because the dimension and technical data of the device giving these results are comparable to those of commercially available hemodialyzers, we should reconsider whether the wearable artificial kidney can be put into clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ota K. Concept and classification of blood purification. In: Ketsueki jyoka ryohou (Blood purification). Tokyo: Nihon Rinsyosya 1991;7–10

    Google Scholar 

  2. Maeda K. An overview of dialysis treatment in Japan (as of Dec. 31, 1996) J Jpn Soc Dial Ther 1998;31:1–24

    Google Scholar 

  3. Babb AL, Popovich RP, Christopher TG, Scribner BH. The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs 1971;17:81–91

    PubMed  CAS  Google Scholar 

  4. Gejyo F, Tamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T, Kataoka H, Suzuki M, Hirasawa Y, Shirahama T, Cohen AS, Schmid K. A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochem Biophys Res Commun 1985;129:701–706

    Article  PubMed  CAS  Google Scholar 

  5. Ohira S, Abe K, Nagayama M, Ota H, Watanabe B, Sakamoto T. HPM niyotte kessei β2-microglobulin reberuwo teikasaseuruka (Can we decrease β2-microglobulin concentration level of a patient by HPM?). Kid Dial 1990;28(suppl):81–84

    Google Scholar 

  6. Saito A, Takagi T, Sugiura K, Ono M, Minakuchi K, Teraoka S, Ota K. Maintaining low concentrations of plasma β2-microglobulin through continuous slow haemofiltration. Nephrol Dial Transplant 1995;10(suppl 3):52–56

    PubMed  Google Scholar 

  7. Akizawa T, Kitaoka T, Koshikawa S, Watanabe T, Imamura K, Tsurumi T, Suma Y, Eiga S. Development of a regenerated cellulose non-complement activating membrane for hemodialysis. Trans Am Soc Artif Intern Organs 1986;32:76–78

    CAS  Google Scholar 

  8. Akizawa T, Kino K, Koshikawa S, Ikada Y, Kishida A, Yamashita M, Imamura K. Efficiency and biocompatibility of a polyethylene glycol grafted cellulose membrane during hemodialysis. Trans Am Soc Artif Intern Organs 1989;35:333–335

    CAS  Google Scholar 

  9. Arakawa M, Nagao M, Gejyo F, Terada R, Kobayashi T, Kunitomo T. Development of a new antithrombogenic continuous ultrafiltration system. Artif Organs 1991;15:171–179

    Article  PubMed  CAS  Google Scholar 

  10. Ishihara K, Fukumoto K, Miyazaki H, Nakabayashi, N. Improvement of the hemocompatibility on a cellulose hollow fibers with a novel biomedical polymer having a phospholipid polar group. Artif Organs 1994;18:559–564

    PubMed  CAS  Google Scholar 

  11. Kanamori T, Sakai K. An estimate of β2-microglobulin deposition rate in uremic patients on hemodialysis using a mathematical kinetic model. Kidney Int 1995;47:1453–1457

    PubMed  CAS  Google Scholar 

  12. Karlsson FA, Groth T, Sege K, Wibell L, Peterson PA. Turnover in humans of β2-microglobulin: The constant chain of HLA-antigens. Eur J Clin Invest 1980;10:293–300

    Article  PubMed  CAS  Google Scholar 

  13. Sakai K. Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transplant 1989;4:(suppl.):73–77

    Google Scholar 

  14. Michaels AS. Operating parameters and performance criteria for hemodialyzer and other membrane-separation devices. Trans Am Soc Artif Inter Organs 1966;12:387–392

    CAS  Google Scholar 

  15. Colburn AP. A method of correlating forced convection heat transfer data and a comparison with fluid friction. Trans Am Inst Chem Eng 1933;29:174–210

    CAS  Google Scholar 

  16. Fukuda M, Hosoya N, Kanamori T, Sakai K, Nishikido J, Watanabe T, Fushimi F. Determination of optimal fiber density of conventional and high performance dialyzers. Artif Organs Today 1992;2:205–214

    Google Scholar 

  17. Babb AL, Grimsrud L, Bell RL, Layno SB. Engineering aspects of artificial kidney systems. In: Hershey D (ed) Chemical engineering in medicine and biology. New York: Plenum, 1967;289–332

    Google Scholar 

  18. Sakai K, Mineshima M. Therapeutic parameters for solute removal in hemodialysis. J Chem Eng Jpn 1983;16:320–323

    CAS  Google Scholar 

  19. Cooney DO. Biomedical engineering principles. New York: Marcel Dekker, 1976:21–23

    Google Scholar 

  20. Werynski A. Evaluation of the impact of ultrafiltration on dialyzer clearance. Artif Organs 1979;3:140–142

    Article  PubMed  CAS  Google Scholar 

  21. Arai J. Nyosono sairiyouo cyushin-nisite (Urea metabolism),. Rinsyotouseki (Clin Dialysis) 1987;3:207–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kanamori PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamori, T., Shinbo, T. & Sakai, K. Feasibility of warable artificial kidney using presently commercially availble hollow-fiber membrane. J Artif Organs 1, 69–75 (1998). https://doi.org/10.1007/BF02479987

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479987

Key words

Navigation