Journal of Artificial Organs

, Volume 3, Issue 2, pp 75–84 | Cite as

Mechanical circulatory support devices for bridge to heart transplantation, bridge to recovery, or destination therapy

  • Setsuo Takatani
  • Tohru Sakamoto
Next-Generation Devices: Review


Both the ventricular assist device (VAD) and the total artificial heart (TAH) have been effective in supporting circulation of end-stage cardiac patients and in bridging to heart transplantation. However, because of a shortage of donor hearts and age limitations, destination therapy with the completely implantable VAD has also been started. The totally implantable TAH in the United States is in the final stage of development and will go into preclinical trials in 2004. In Japan, heart transplantation has been re-instituted since last year, but because of shortages of donor hearts the waiting time prior to transplantation is fairly long. To date, six heart transplantations have been carried out, of which four have been bridged transplantations, using extracorporeal or implantable VADs. With the extracorporeal VADs, patients cannot be discharge home, which increases the hospital expenses. With the implantable VADs such as Novacor and HeartMate imported from the USA, patients can be discharged home, but major threats with these devices are thromboembolic, complications and infection. These devices are also fairly large, being designed for 80-kg patients, and are thus difficult to implant in patients of 50 to 60 kg, including women. Because of these limitations, there is a strong clinical demand for a compact, high-performance, implantable, permanent-use VAD. This paper addresses the current status of the artificial heart research and development program at the Tokyo Medical and Dental University, which was started in May 1999.

Key words

Ventricular assist device (VAD) Total artificial heart (TAH) Heart transplantation Bridge to transplantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mussivand T. Mechanical circulatory devices for the treatment of heart failure. J Card Surg 1999;13:218–228Google Scholar
  2. 2.
    Frazier OH, Rose EA, McCarthy P, Burton NA, Tector A, Levin H, Kayne HL, Pirier VL, Dasse KA. Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann Surg 1995;222:327–338PubMedGoogle Scholar
  3. 3.
    McCarthy PM, Smedira NO, Vargo RL, Goormastic M, Hobbs RE, Starling RC, Young JB. One hundred patients with the Heartmate left ventricular assist device: evolving concepts and technology. J Thorac Cardiovasc Surg 1998;115:904–912PubMedCrossRefGoogle Scholar
  4. 4.
    Banayosy EL, Arusoglu L, Kizner L, Tenderich G, Minami K, Inoue K, Korfer R. Novacor left ventricular assist system versus HeartMate vented electric left ventricular assist system as a long-term mechanical circulatory support device in bridging patients: a prospective study. J Thorac Cardiovasc Surg 2000;119: 581–587PubMedCrossRefGoogle Scholar
  5. 5.
    Snyder AJ, Pae W, Bochmer J, Rosenberg G, Pierce W, Thompson J, Lewis J, Frank D, Zintak H. First clinical trials of a completely implanted destination therapy ventricular assist system. Heart Replacement Artif Heart 2000;7 (in press)Google Scholar
  6. 6.
    Arabia FA, Copeland JG, Smith RG, Banchy M, Foy B, Kormos R, Tector A, Long J, Dembitsky W, Carrier M, Keon W, Pavie A, Duveau D. Cardio West total artificial heart: a retrospective controlled study. Artif Organs 1999;23:204–207PubMedCrossRefGoogle Scholar
  7. 7.
    Pierce WS, Sapirstein JS, Pae WE. Total artificial heart: from bridge to transplantation to permanent use. Ann Thorac Surg 1996;61:342–346PubMedCrossRefGoogle Scholar
  8. 8.
    Weiss W, Rosenberg G, Snyder A, Pierce W, Pae W, Sun B, Rawhouser M, Felder G, Reibson G, Ford S, Marlotte J, Nazarian R, Hicks D. Chronic in vivo testing of a completely implanted total artificial heart. ASAIO J 2000:46:186CrossRefGoogle Scholar
  9. 9.
    Inman RW, Conger JL, Radovancevic B, Ochs B, Macris MP, Springer WE, Gregoric ID, Eya K, Tamez D, Kung RTV, Frazier OH. Twelve-week in vivo, experience with the Abiocor replacement heart. ASAIO J 2000;46:166CrossRefGoogle Scholar
  10. 10.
    Matsuda H, Fukushima N, Sawa Y, Nishimura M, Matsumiya G, Shirakura R. First brain dead donor heart transplantation under new legislation in Japan. Jpn J Thorac Cardiovasc Surg 1999;47: 499–505PubMedGoogle Scholar
  11. 11.
    Matsuda H. Current status of heart transplantation in Japan. Special lecture given at Ochanomizu Transplantation Seminar Series on June 20, 2000, in Tokyo, JapanGoogle Scholar
  12. 12.
    Minami K, El-Banayosy A, Sezai A, Arusoglu L, Sarnowsky P, Fey O, Koefer R. Morbidity and outcome after mechanical ventricular support using Thoratec, Novacor, and HeartMate, for bridging to heart transplantation. Artif Organs 2000;24:421–426PubMedCrossRefGoogle Scholar
  13. 13.
    Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 1994;264:98–101PubMedGoogle Scholar
  14. 14.
    Milano CA, Allen LF, Rockman HA, Dolber, PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ. Enhanced myocardial function in transgenic mice overexpressing the beta-2-adrenergic receptor. Science 1994:264:582–586PubMedGoogle Scholar
  15. 15.
    Tatsumi E, Taenaka Y, Uesho K, Homma A, Zhang B, Nishinaka T, Kakuta Y, Nakata M, Tsukiya T, Katagiri N, Imada K, Ohinishi Y, Sato K, Takahashi M, Takano H, Mazuzawa T, Nakamura M. Long-term in vivo testing of the National Cardiovascular Center electrohydraulic total, artificial heart. Heart Replacement Artif Heart 2000;7 (in press)Google Scholar
  16. 16.
    Yoshikawa M, Nonaka K, Linneweber J, Kawahito S, Ohtsuka G, Nakata K, Takano T, Schulte-Einstrup S, Glueck J, Schima H, Wolner E, Nose Y. Development of the NEDO implantable ventricular assist device with gyro centrifugal pump. Artif Organs 2000;24:459–467PubMedCrossRefGoogle Scholar
  17. 17.
    Hogness JR, VanAntwerp M. The Artificial Heart: Prototypes, Policies, and Patients. Washington, DC: National Academy Press, 1991.Google Scholar
  18. 18.
    Nakatani T, Sasako Y, Kobayashi J, Kamamura K Kosakai Y, Nakano K, Yamamoto F, Kumon K, Miyatake K, Kitamura S, Takano H. Recovery of a crdiac function by long-term left ventricular support in patients with end-stage cardiomyopathy. ASAIO J 1998;44:M516-M520PubMedGoogle Scholar
  19. 19.
    Muller J, Wallukat G, Weng Y, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Loebe M, Meyer R, Hetzer R. Treatment of idiopathic dilated cardiomypathy (beta-cardiomyopathy) by insertion of a left ventricular mechanical support system. Heart Replacement Artif Heart 1998;6:281–294Google Scholar
  20. 20.
    Takatani S, Koyanagi H, Nogawa M, Inamoto T, Nishida H. Ultracompact, high-performance, completely implantable permnent electromechanical total, artificial heart. Heart Replacement Artif Heart 1998;6:8–14Google Scholar
  21. 21.
    Inamoto T, Iijima T, Honda N, Nogawa M, Monowa T, Miura M, Shimazaki Y, Takatani S. Development of a motor driven total artificial heart: evaluation of control drive mode. Jpn J Artif Organs 1998;27:41–45Google Scholar
  22. 22.
    Honda N, Inamoto T, Nogawa M, Miura M, Shimazaki Y, Takatani S. Ultracompact, completely implantable, permanent use electromechanical ventricular assist device and total artificial heart. Artif Organs 1999;23:253–261PubMedCrossRefGoogle Scholar
  23. 23.
    Takatani S, Nakamura M, Ouchi K, Sakamoto T. Ultracompact, completely implantable electro-mechanical permanent TAH. Heart Replacement Artif Heart 2000;7 (in press)Google Scholar
  24. 24.
    Shiono M, Noon GP Hess KR, Takatani S, Sasaki T, Orime Y, Young JB, Nose Y, DeBakey ME. Anatomic constrants for a total artificial heart in orthotopic heart transplant, recipients. J Heart Lung Transplant 1994;13:250–262PubMedGoogle Scholar
  25. 25.
    Honda N, Egawa K, Inamoto T, Yamamoto K, Nogawa M, Miura M, Shimazaki Y, Takatani S. Development of a permanent use totally implantable, ultra-compact, motor driven ventricular assist device and its evaluation. Jpn J Artif Organs 1999;28:37–42Google Scholar
  26. 26.
    Honda N, Nogawa M, Takatani S. Development of an ultra-compact, totally implatable ventricular assist device—toward animal experiment. Jpn J Artif Organs 2000;29:42–46Google Scholar
  27. 27.
    Takatani S, Nakamura M, Ouchi K, Sakamoto T. Ultracompact, completely implantable electro-mechanical pulsatile VAD. Heart Replacement Artif Heart 2000;7 (in press)Google Scholar
  28. 28.
    Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H. Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J Mat Sci Mat Med 1998;9:567–574CrossRefGoogle Scholar
  29. 29.
    Iijima T, Inamoto T, Nogawa M Takatani S. Control of the centrifugal pump based on the motor motor current. Artif Organs 1997;21:655–660PubMedCrossRefGoogle Scholar
  30. 30.
    Yuhki A, Hatoh E, Takatani S. Detection of the suction and regurgitation of the implantable centrifugal pump based on the motor current waveform analysis and its application to optimization of pump flow. Artif Organs 1999;23:532–537PubMedCrossRefGoogle Scholar
  31. 31.
    Yuhki A, Hatoh E, Nogawa M, Takatani S. Development a tri-pod supported seal-less centrifugal blood pump. Jpn J Artif Organs 2000(in press)Google Scholar
  32. 32.
    Yuhki A, Nogawa M, Takatani S. Development of a compact, sealless, tri-pod supported, magnetically driven centrifugal blood pump. Artif Organs 2000;24:501–505PubMedCrossRefGoogle Scholar
  33. 33.
    Nose Y, Yoshikawa M, Murabayashi S, Takano T. Development of rotary blood pump technology: past, present, and future. Artif Organs 2000;24:412–420PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas DC, Butler KC, Taylor LP, Blanc PL, Rintoul TC, Petersen TV, Griffith, BP, Kormos RL, Borovetz HS, Litwak P, Kameneva MV, Choi S, Burgreen GW, Wu Z, Antaki JF. Progress on development of the Nimbus-University of Pittsburgh axial flow left ventricular assist system. ASAIO J 1998;M521–M524Google Scholar
  35. 35.
    Wieselthaler GM, Schima H, Hiesmayr M, Pacher R, Laufer G, Noon GP, DeBakey M, Wolner E. First clinical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation 2000;101:356–359PubMedGoogle Scholar
  36. 36.
    Masuzawa T, Kita T, Matsuda K, Okada Y. Magnetically suspended rotary blood pump with radial type combined motor-bearing. Artif Organs 2000;24:468–474PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson JB, Wood HG, Allaire PE, Olsen DB. Numerical analysis of blood flow in the clearance regions of a continuous flow artificial heart pump. Artif Organs 2000;24:492–500PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2000

Authors and Affiliations

  1. 1.Department of Aritificial Organs Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Thoracic Organ Replacement, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations