Asymptotic distribution of rank statistics for experiments involving incomplete block designs

  • Madan L. Puri
  • Norman L. Wykoff
Article
  • 14 Downloads

Keywords

Asymptotic Distribution Asymptotic Normality Rank Statistic Multivariate Normal Distribution Dispersion Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete blocks designs 1,Biometrika,39, 324–345.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Durbin, J. (1951). Incomplete blocks in ranking experiments,Brit. J. Psychology,4, 85–90.Google Scholar
  3. [3]
    Husková, M. (1970). Asymptotic distribution of linear rank statistics used for testing symmetry,Z. Wahrsch. verw. Geb.,14, 308–322.MATHCrossRefGoogle Scholar
  4. [4]
    Mehra, K. L. and Puri, M. L. (1967). Multisample analogues of some one sample tests,Ann. Math. Statist.,38, 523–549.MATHMathSciNetGoogle Scholar
  5. [5]
    Puri, M. L. (1964). Asymptotic efficiency of a class ofc-sample tests,Ann. Math. Statist.,35, 102–121.MathSciNetGoogle Scholar
  6. [6]
    Puri, M. L. and Sen, P. K. (1969). On the asymptotic theory of rank order tests for experiments involving paired comparisons,Ann. Inst. Statist. Math.,21, 163–173.MATHMathSciNetGoogle Scholar
  7. [7]
    Puri, M. L. and Sen, P. K. (1969). On the asymptotic normality of one sample rank order statistics,Teor. Veroyat. Primen.,14, 167–172.MATHMathSciNetGoogle Scholar
  8. [8]
    Pyke, R. and Shorack, G. R. (1968). Weak convergence and a Chernoff-Savage theorem for random sample sizes,Ann. Math. Statist.,39, 1675–1685.MATHMathSciNetGoogle Scholar
  9. [9]
    Sen, P. K. (1970). On the distribution of the one sample rank order statistics,Non-parametric Techniques in Statistical Inference, (Ed. M. L. Puri), Cambridge University Press, 53–74.Google Scholar

Copyright information

© Institute of Statistical Mathematics 1974

Authors and Affiliations

  • Madan L. Puri
    • 1
  • Norman L. Wykoff
    • 1
  1. 1.Indiana UniversityUSA

Personalised recommendations