Advertisement

Materials and Structures

, Volume 33, Issue 6, pp 398–402 | Cite as

Study on high performance roller compacted concrete

  • A. C. Bettencourt Ribeiro
  • I. R. de Almeida
Technical Reports

Abstract

Results are presented of a study about mixture design, production and characterisation of a concrete conjugating the typical features of roller compacted concrete with the mixture features of high performance concrete. The compressive strength, the tensile strength and the abrasion resistance of the material produced were determined together with the modulus of elasticity. It has been verified that the material had a very high compressive strength, an abrasion resistance higher than the very coarse aggregate, which formed its composition, a modulus of elasticity comparatively proportional to the compressive strength and a tensile strength not very developed. It has also been assumed that, due mainly to the energy spent in the vibration of that concrete, the binding material used was three times more effective than when used in normal concrete.

Keywords

Compressive Strength Silica Fume Coarse Aggregate Abrasion Resistance High Performance Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On présente les résultats d'une étude sur le mélange, la production et la caractérisation d'un béton associant les caractéristiques typiques d'un béton compacté au rouleau avec les caractéristiques de dosage d'un béton à haute performance. La résistance à la compression, la résistance à la traction et la résistance à l'abrasion du matériau produit ont été déterminées simultanément avec le module d'élasticité. On a vérifié que le matériau avait une résistance à la compression très haute, une résistance à l'abrasion plus grande que celle de l'agrégat lui-même, entrant dans sa composition, et, finalement, avait un module d'élasticité relativement proportionnel à la résistance à la compression, pour une résistance à la traction peu élevée. On a aussi constaté qu'à cause de l'énergie utilisée pour la vibration de ce béton, le matériau agglomérant utilisé a été trois fois plus efficace que s'il avait été utilisé dans un béton courant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Moler, W. A. and Moore, J. F., ‘Design of seepage control systems for RCC Dams’, in ‘Roller Compacted Concrete II’, Proceedings of an International Conference, San Diego, Califormia, Feb. 29–March 2, 1988 (American Society of Civil Engineers, New York, 1988) 61–75.Google Scholar
  2. [2]
    Andriolo, F. R., ‘Contributions to the knowledge and development of Roller Compacted Concrete’ (Barber-Greene, Brazil, 1989) (Only available in Portuguese).Google Scholar
  3. [3]
    Ribeiro, A. B., ‘Characterisation and mixture proportioning of Roller Compacted Concrete’, Report 57/97-NAB, Portuguese National Laboratory of Civil Engineering, 1997 (Only available in Portuguese).Google Scholar
  4. [4]
    Oliveira, P. J., Salles, F. M. and Andriolo, F. R., ‘Studies of various types of RCC mix designs-laboratory test results’, in ‘Roller Compacted Concrete Dams’, Proceedings of an International Symposium, Santander, Spain, 2–4 Oct. 1995 (Spanish Institute of Cement and its Applications, Madrid, 1995) 87–101.Google Scholar
  5. [5]
    Almeida, I. R., ‘High Performance Concrete. Characteristics and Composition’, Doctoral thesis, Instituto Superior Técnico da Universidade Técnica de Lisboa Portugal, 1990 (Portuguese National Laboratory of Civil Engineering, Lisbon, 1990) (Only available in Portuguese)Google Scholar
  6. [6]
    Faury, J., ‘Le Béton’, third edition, (Dunod, Paris, 1958).Google Scholar
  7. [7]
    Dreux, J., ‘Connaissance du Béton’ (Société de Diffusion des Techniques du Bâtiment et des Travaux Publics, Paris, 1964).Google Scholar
  8. [8]
    American Society for Testing and Materials, ‘ASTM C 1170-91, Standard test method for determining consistency and density of Roller-Compacted Concrete using a vibrating table’ Annual Book of ASTM Standards, vol. 4.02 (ASTM, United States of America, 1997) 610–614.Google Scholar
  9. [9]
    American Society for Testing and Materials, ‘ASTM C 1170-92, Standard practice for making Roller-Compacted Concrete in cylinder moulds using a vibrating table’ Annual Book of ASTM Standards, vol. 4.02, (ASTM, United States of America, 1997) 615–618.Google Scholar
  10. [10]
    European Committee for Standardization CEN/TC 104, ‘pr EN-ISO 4012/1-1994, Testing concrete-Determination of compressive strength of test specimens’, Draft: Dec. 1993 (European Committee for Standardization, Brussels, 1994).Google Scholar
  11. [11]
    European Committee for Standardization CEN/TC 104, ‘pr EN-ISO 4108-1994, Testing concrete-Determination of tensile splitting strength of test specimens’, Draft: July 1994 (European Committee for Standardization, Brussels, 1994).Google Scholar
  12. [12]
    National Laboratory of Civil Engineering, LNEC E 396-1993-Concrete. Determination of abrasion resistance’ (Portuguese National Laboratory of Civil Engineering, Lisbon, 1993) (Only available in Portuguese).Google Scholar
  13. [13]
    National Laboratory of Civil Engineering, ‘LNEC E 397-1993, Concrete. Determination of elastic modulus in compression’ (Portuguese National Laboratory of Civil Engineering, Lisbon, 1993) (Only available in Portuguese).Google Scholar
  14. [14]
    European Committee for Standardization, ‘European Prestandard ENV 1992-1-1, Eurocode 2, Design of Concrete Structures. Part 1 —General Rules and rules for buildings’ Dec. 1991, (European Committee for Standardization, Brussels, 1991).Google Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • A. C. Bettencourt Ribeiro
    • 1
  • I. R. de Almeida
    • 2
  1. 1.National Laboratory of Civil EngineeringLNECLisbonPortugal
  2. 2.Building Construction Materials-UFFNiteróiBrazil

Personalised recommendations