Skip to main content
Log in

On the use of nanoindentation for cementitious materials

  • Published:
Materials and Structures Aims and scope Submit manuscript


Recent progress in experimental and theoretical nanomechanics opens new venues in materials science for the nano-engineering of cement-based composites. In particular, as new experimental techniques such as nanoindentation provide unprecedented access to micromechanical properties of materials, it becomes possible to identify the mechanical effects of the elementary chemical components of cement-based materials at the scale where physical chemistry meets mechanics, including the properties of the four clinker phases, of portlandite, and of the C-S-H gel. In this paper, we review some recent results obtained by nanoindentation, which reveal that the C-S-H gel exists “mechanically” in two different forms, a lowdensity form and a high-density form, which have different mean stiffness and hardness values and different volume fractions. While the volume fractions of the two phases depend on mix proportions, the mean stiffness and hardness values do not change from one cement-based material to another; instead they are intrinsic properties of the C-S-H gel.


Les récents progrès en “nanomécanique”, aussi bien sur le plan théorique qu’expérimental, ouvrent de nouvelles perspectives en science des matériaux pour la nano-ingénierie des composites à base de ciment. Grace à de nouvelles techniques expérimentales telles que la ‘nanoindentation’, qui permet d’avoir un accès sans précédent aux propriétés micromécaniques des matériaux, il devient notamment possible d’identifier les effets mécaniques des composants chimiques élémentaires à l’échelle où la chimie rejoint la mécanique; cela inclut les propriétés des quatre phases de clinkers, de la portlandite et du gel de C-S-H. Dans le présent article, nous analysons quelques résultats récents obtenus par nanoindentation; ces résultats révèlent que le gel de C-S-H existe “mécaniquement” sous deux formes différentes, l’une à faible densité et l’autre à forte densité. La valeur moyenne du module d’élasticité, de la dureté, ainsi que la fraction volumique de ces deux formes sont différentes. Alors que la fraction volumique des deux phases dépend de la formulation du mélange, les valeurs moyennes du module d’élasticité et de la dureté sont identiques d’un composite à l’autre; il s’agit de propriétés intrinsèques du gel de C-S-H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Brinell, J.A., ‘Congrès International des Méthodes d’Essai des Matériaux de Construction’, Paris, Tome 2, 83–94 1901.

    Google Scholar 

  2. Tabor, D., ‘The Hardness of Metals’ (Oxford classical texts in the physical sciences—First published 1951, 2000).

  3. Boussinesq, J., ‘Applications des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques’, (Gauthier-Villars, 1885).

  4. Hertz, H., ‘On the contact of elastic solids (in German), Zeitschrift für die Reine und angewandte Mathematik’, English translation in miscellaneous papers (translated by D.E. Jones and G.A. Schott) (1881)99 146–62. Macmillan, London, UK, (1986)92 156–71.

    Google Scholar 

  5. Sneddon, I., ‘The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile’,International Journal of Engineering Science 3 (1965) 47.

    Article  MATH  MathSciNet  Google Scholar 

  6. Doerner, M.F. and Nix, W.D., ‘A method for interpreting the data from depth-sensing indentation instruments’,Journal of Material Research 1 (1986).

  7. Pharr, G.M., Oliver, W.C. and Brotzen, F.R., ‘On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation’,Journal of Material Research 7 (3) (1992) 613–617.

    Google Scholar 

  8. Giannakopoulos, A.E. and Suresh, S., ‘Determination of elastoplastic properties by instrumented sharp indentation’,Scripta Materialia 40 (10) (1999) 1191–1198.

    Article  Google Scholar 

  9. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S., ‘Computational modeling of the forward and reverse problems in instrumented sharp indentation’,Acta Materialia 49 (19) (2001) 3899–3918.

    Article  Google Scholar 

  10. King, R.B., ‘Elastic analysis of some punch problems for a layered medium’,International Journal of Solids and Structures 23 1657.

  11. Suresh, S. and Giannakopoulos, A.E., ‘Report Inst 2/98’, Massachusetts Institute of Technology, 1998.

  12. Suresh, S., Giannakopoulos, A.E. and Alcala, J., ‘Spherical indentation of compositionally graded materials: Theory and experiments’,Acta Materialia 45 (4) (1997) 1307–1321.

    Article  Google Scholar 

  13. Giannakopoulos, A.E. and Larsson, P.L. and Vestergaard, R., ‘Analysis of vickers indentation’,International Journal of Solids and Structures 31 (19) (1994) 2679–2708.

    Article  MATH  Google Scholar 

  14. Igarashi, S., Bentur, A. and Mindess, S., ‘Characterization of the microstructure and strength of cement paste by microhardness testing’,Advances in Cement Research 8 (30) (1996) 877–92.

    Google Scholar 

  15. Zhu, W. and Bartos, P.J.M., ‘Assessment of interfacial microstructure and bond properties in aged (GRC) using a novel microindentation method’,Cement and Concrete Research 27 (1997) (11) 1701–1711.

    Article  Google Scholar 

  16. Zhu, W. and Bartos, P.J.M., ‘Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete’,Cement and Concrete Research 30 (8) (2000) 1299–1304.

    Article  Google Scholar 

  17. Trtik, P., Reeves, C.M. and Bartos, P.J.M., ‘Use of focused ion beam (FIB) for advanced interpretation of microindentation test results applied to cementitious composites’,Materials and Structures 33 (227) (2000) 189–193.

    Article  Google Scholar 

  18. Kholmyansky, M., Kogan, E. and Kovler, K., ‘On the hardness determination of fine-grained concrete’,Materials and Structures 27 (174) (1994) 584–587.

    Article  Google Scholar 

  19. Velez, K., Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F., ‘Determination by nanoindentation of elastic modulus and hardness of pure constituents of portland cement clinker’,Cement and Concrete Research 31 (4) (2001) 555–561.

    Article  Google Scholar 

  20. Acker, P., ‘Micromechanical analysis of creep and shrinkage mechanisms’, in F.-J. Ulm, Z.P. Bažant, and F.H. Wittmann, editors, ‘Creep, Shrinkage and Durability Mechanics of Concrete and other quasi-brittle Materials’, Cambridge, MA, August 2001, Elsevier, Oxford, UK.

    Google Scholar 

  21. Constantinides, G. and Ulm, F.-J., ‘The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling’, submitted inCement and Concrete Research, 2002.

  22. Constantinides, G. and Ulm, F.-J., ‘The elastic properties of calcium-leached cement pastes and mortars: a multi-scale investigation’, MIT CEE Report R02-01, 2002.

  23. Heukamp, F.H., Ulm, F.J. and Germaine, J.T., ‘Mechanical properties of calcium-leached cement pastes: triaxial stress states and the influence of the pore pressures’,Cement and Concrete Research 31 (5) (2001) 767–774.

    Article  Google Scholar 

  24. Ulm, F-J and Coussy, O., ‘Mechanics and durability of solids, Volume I: Solid mechanics’, MIT and Prentice Hall series on Civil, Environmental and Systems Engineering (Cambridge, MA, 2002).

  25. Tennis, P.D. and Jennings, H.M., ‘A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes’,Cement and Concrete Research 30 (6) (2000) 855–863.

    Article  Google Scholar 

  26. Jennings, H.M., ‘A model for the microstructure of calcium silicate hydrate in cement paste’,Cement and Concrete Research 30 (1) (2000) 101–116.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Editorial Note Prof. Franz-Josef Ulm is a RILEM Senior Member. He was awarded the 2002 Robert L’Hermite Medal. He is Associate Editor forConcrete Science and Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinides, G., Ulm, F.J. & Van Vliet, K. On the use of nanoindentation for cementitious materials. Mat. Struct. 36, 191–196 (2003).

Download citation

  • Issue Date:

  • DOI: