Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Feasibility of concrete prestressed by shape memory alloy short fibers

  • 470 Accesses

  • 29 Citations

Abstract

Mortar and concrete exhibit low tensile strengths. Hence, cracks develop easily due to shrinkage and external actions. They can be prevented by applying prestress, thus obtaining crack-free products. Such products exhibit a high bending and tensile strength, are leak proof and of high durability. Prestress can be realized using external or internal wires or cables. In thin walled products, however, this is not feasible. For this purpose, short fibers of shape memory alloy (SMA) wires were embedded in mortar. The wires had been shaped by inelastic elongation into loop-and star-shaped fibers. After hardening of the mortar, the specimens were heated up in order to activate the tensile stress in the fibers, thereby causing a prestress of the surrounding mortar. The effect was monitored by length measurements both on specimens with and without fibers. Compression stresses in the cement mortar were estimated by multiplying the difference in strain between fiber-reinforced and reference prisms by the Young's modulus. Thus, compression of some 7 MPa was reached in the experiments. For practical applications, alloys with suitable temperature domains of austenitic and martensitic transformation, most likely Fe-based, and efficient methods for the production of such fiber mortars are to be developed.

Résumé

Le mortier et le béton possèdent peu de résistance à la traction et ils se fissurent facilement suite à leur retrait ou sous actions extérieures. Cette fissuration peut être évitée en leur appliquant une précontrainte interne ou externe à l'aide de fils ou de câbles. Les produits précontraints présentent une résistance élevée à la flexion et à la compression; il sont aussi imperméables et possèdent une durabilité élevée. Cette méthode n'est toutefois pas applicable aux éléments de construction de faible épaisseur. Dans la présente étude, des fibres courtes en alliage à mémoire de forme (AMF) ont été noyées dans un mortier. Ces fibres avaient été au préalable formées par élongation inélastique pour leur conférer des formes de boucle et d'étoile. Après durcissement du mortier, les éprouvettes ont été chauffées afin d'activer la contrainte de traction dans les fibres provoquant ainsi une précontrainte du mortier environnant. L'effet des fibres a été déterminé par des mesures de longueur réalisées sur des éprouvettes avec et sans fibres. Les contraintes de compression dans le mortier ont été estimées en multipliant par le module d'élasticité la différence de contrainte entre prismes renforcés de fibres et prismes sans fibres. Des compressions atteignant environs de 7 MPa ont été obtenues dans ces essais. Pour des applications pratiques, il sera encore nécessaire de développer des alliages à mémoire de forme (probablement à base de fer) présentant des domaines de température de transformation austénitique et martensitique adéquats et aussi des méthodes efficaces pour la production de tels mortiers.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Mörsch, E., ‘Reinforced concrete (Der Eisenbetonbau)’ (Stuttgart, 1923) [only available in German].

  2. [2]

    Leonhard, F., ‘Lectures on Reinforced Concrete Construction-Part 1: Design Principles (Vorlesungen über Massivbau-Teil 1: Grundlagen zur Bemessung im Stahlbetonbau)’ (Berlin-New York: Springer, 1984) [only available in German].

  3. [3]

    Hampe, E., Raue, E. and Kaller, W., ‘Reinforced Concrete-Part 1: Basic Principles’ (Stahlbeton-Teil 1: Grundlagen) (Berlin-München: Verlag für Bauwesen, 1993) 304 [only available in German].

  4. [4]

    Bentur, A. and Mindess, S., ‘Fiber Reinforced Cementitious Composites’ (London-New York: Elsevier Applied Science, 1990).

  5. [5]

    König, G., Holschemacher, K. and Dehn, F., ‘Fiber Reinforced Concrete (Faserbeton)’ (Berlin: Bauwerk Verlag Gmbh., 2002) 320 [only available in German].

  6. [6]

    Hesselbarth, D. and Kaufmann, J., ‘High strength Eiber Reinforced Composite (Hochleistungsfaserkomposit)’ Swiss Federal Institute for Materials Testing and Research (Empa): Dübendorf, section 4.8.1, 2004 [only available in German].

  7. [7]

    Shao, Y. and Shah, S. P., ‘Mechanical properties of PVA fiber reinforced composites fabricated by extrusion processing’,ACl Materials Journal 94(6) (1997) 555–564.

  8. [8]

    Parlinska, M.et al., ‘Adaptive composites with embedded shape memory alloys.Journal de Physique IV, France, (11) (2001) 197–204.

  9. [9]

    Soroushian, P., ‘Metal matrix materials reinforced with shape memory fibers for enhanced ductility and energy absorption capacity, and method of manufacturing same’, United States Patent No. 6,025,080, February 15, 2000.

  10. [10]

    Chung, D.D.L., ‘Cement Matrix Composites for Smart Structures’, Smart Mater. Struct. 2000 (9): p. 389–401.

  11. [11]

    Chen, S.H., G.F. Yao, and C. Huang, ‘A New Intelligent Thin-Shell Element’ Smart Mater. Struct., 2000(9): p. 10–18.

  12. [12]

    Balta Neumann, J.A., ‘Adaptive composites with embedded shape memory alloy wires’, in Faculté Sciences et Techniques de l'Ingénieur, Ecole Polytechnique Fédérale de Lausanne (EPFL): Lausanne (2003) 175.

  13. [13]

    Watanabe, Y., Miyazaki, E. and Okada, H., ‘Enhanced mechanical properties of Fe-Mn−Si-Cr shape memory fiber/plaster’,Smart Composite. Materials Transactions 43(5) (2002) 974–983.

  14. [14]

    Krstulovic-Opara, N. and Naaman, A.E., ‘Self-stressing fiber composites’,ACI Structural Journal 97(2) (2000) 335–344.

  15. [15]

    Maji, A.K. and Negret, I., ‘Smart prestressing with shapememory alloy’,Journal of Engineering Mechanics-ASCE 124(10) (1998) 1121–1128.

  16. [16]

    Deng, Z.,et al., ‘Behavior of concrete driven by uniaxialy embedded shape memory alloy actuators’Journal of Engineering Mechanics-ASCE 129(6) (2003) 697–703.

  17. [17]

    Soroushian, P.et al., ‘Repair and strengthening of concrete structures through application of corrective post tensioning forces with shape memory alloys’, in ‘Design of Structures’ (Transportation Research Board Natl. Research Council: Washington, 2001) 20–26.

  18. [18]

    Krstulovic-Opara, N. and Thiedemann, P.D., ‘Active confinement of concrete members with self-stressing composites’,ACI Materials Journal 97(3) (2000) 297–308.

  19. [19]

    Krstulovic-Opara, N.,et al., ‘Self-actuating SMA-HPFRC fuses for auto-adaptive composite structures’,Computer-Aided Civil and Infrastructure Engineering 18(1) (2003) 78–94.

  20. [20]

    Magonette, G., ‘Shape memory alloys RF in civil engineering with particular regard to old structures’, in ‘Shape Memory Alloys. Advances in Modelling and Applications’, (International Centre for Numerical Methods on Engineering (CIMNE), Barcelona, Spain, 2001).

  21. [21]

    Saadat, S.et al., ‘An overview of vibration and seismic applications of NiTi shape memory alloy,’Smart Mater. Struct. (11) (2002) 218–229.

  22. [22]

    Janke, L., Czaderski, C., Motavalli, M. and Ruth, J., ‘Applications of Shape Memory Alloys in Civil Engineering Structures-Overview, Limits and New Ideas’,Mater. Struct.,38 (279) (2005) 578–592.

  23. [23]

    Duerig, T.W., ‘Engineering Aspects of Shape Memory Alloys’ (London etc.: Butterworth-Heinemann. XI, 1990) 499.

  24. [24]

    shrinivasan, A.V. and McFarland, D.M., ‘Smart Structures’ (Cambridge: Cambridge University Press, 2001).

  25. [25]

    Yong-zhi, L., ‘Behaviour of Fiber Reinforced Concrete under Load (Tragverhalten von Stahlfaserbeton)’, Heft 494 (Deutscher Ausschuss für Stahlbeton: Berlin, 1999) [only available in German].

  26. [26]

    Pfyl, T., ‘Behaviour of Fiber Reinforced Concrete under Load (Tragverhalten von Stahlfaserbeton)’, Swiss Federal Institute of Technology (ETH): Zurich, 2002, 140 [only available in German].

  27. [27]

    Bergamini, A, Moser, K., Christen, R. and Czaderki, C., ‘Internally prestressed cementitious building material, and method of manufacturing same (Innerlich vorgespannter zementgebundener Baustoff und Verfahren zu seiner Herstellung, Swiss patent No. 01935/04, pending, November 24, 2004 [only available in German].

Download references

Author information

Additional information

Editorial note Empa is a RILEM Titular Member.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moser, K., Bergamini, A., Christen, R. et al. Feasibility of concrete prestressed by shape memory alloy short fibers. Mat. Struct. 38, 593–600 (2005). https://doi.org/10.1007/BF02479551

Download citation

Keywords

  • Residual Stress
  • Shape Memory Alloy
  • Reinforce Concrete
  • Cement Mortar
  • Shape Memory Alloy Wire