Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas


Shape memory alloys (SMAs) are metallic materials with great potential to enhance civil engineering structures. They are often referred to as smart materials. A basic description of their highly non-linear material behaviour in terms of shape memory effect, superelasticity, martensite damping and variable stiffness is given in this article. It is followed by a brief introduction to Ni−Ti and Fe−Mn−Si SMAs. Pre-existing and new applications in the fields of damping, active vibration control and prestressing or posttensioning of structures with fibres and tendons are being reviewed with regard to civil engineering. Furthermore, the relatively high costs and the problem of retaining posttensioning forces when using some types of SMAs are named. In this regard is Fe−Mn−Si−Cr discussed as potential low cost SMA. A simple model for calculating the activation times of resistive heated SMA actuators or springs is presented. The results and measured data lead to further constrictions. Finally, new ideas for using SMAs in civil engineering structures are proposed in this article such as an improved concept for the active confinement of concrete members. This article is to introduce civil engineers to the world of shape memory alloys and invite them to contribute to their wider use in civil engineering structures.


Les alliages à mémoire de forme (AMF), souvent qualifiés de «matériaux intelligent», présentent un grand potentiel pour l'amélioration des ouvrages de génie civil. Une description de leurs comportements non linéaires, que sont la mémoire de forme, la superélasticité, la capacité d'amortissement de la martensite et la rigidité variable, est donnée. Elle est suivie d'une introduction sur les AMF Ni−Ti et Fe−Mn−Si. Des applications telles que l'amortissement et le contrôle actif des vibrations ou la pré- ou postcontrainte au moyen de fibres et de câbles sont décrites. Les problèmes du coût des AFM et du maintien de la postcontrainte rencontré avec certains AFM sont aussi abordés. L'alliage Fe−Mn−Si−Cr est discuté comme AMF potentiellement bon marché. Un modèle du temps d'activation des actuateurs ou des ressorts en AMF chauffés par résistance est présenté. Cette modélisation et les résultats de mesure montrent que l'utilisation de ces AMF reste soumise à certaines restrictions. Finalement, de nouvelles applications des AMF en génie civil, telles qu'une méthode de confinement actif des éléments en béton, sont présentées. Cet article se propose d'introduire les ingénieurs en génie civil dans l'univers des AMF pour les inciter à contribuer à leur plus large utilisation.

This is a preview of subscription content, access via your institution.


  1. [1]

    Callister, W.D., ‘Materials Science and Engineering: An Introduction’, 6th Edn. (Wiley, New York, 2003).

    Google Scholar 

  2. [2]

    Funakubo, H., ‘Precision Machinery and Robotics, Vol. 1— Shape Memory Alloys’ (Gordon and Breach, 1987).

  3. [3]

    Duerig, T.W., ‘Engineering Aspects of Shape Memory Alloys’, (Butterworth-Heinemann, London, 1990).

    Google Scholar 

  4. [4]

    Otsuka, K. and Wayman, C.M., ‘Shape Memory Materials’ (Cambridge University Press, 1999).

  5. [5]

    Humbeeck, J.V., ‘Shape memory alloys: A material and a technology’,Adv. Eng. Mater. 3 (11) (2001) 837–850.

    Article  Google Scholar 

  6. [6]

    Otsuka, K. and Kakeshita T., ‘Science and technology of shape-memory alloys. New developments’,Mrs Bulletin 27 (2) (2002) 91–100.

    Google Scholar 

  7. [7]

    Hodgson, D.E., ‘Damping applications of shape-memory alloys’, in ‘Materials Science Forum’394–395 (Trans Tech Publications, Zürich-Uetikon, 2002) 69–74.

    Google Scholar 

  8. [8]

    Humbeeck, J.V., ‘The high damping capacity of shape memory alloys’,Z. Metallkd.,86 (3) (1995) 176–183.

    Google Scholar 

  9. [9]

    Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Baron, I., Suzuki, Y. and Masuda, A., ‘An overview of vibration and seismic applications of NiTi shape memory alloy.Smart Mater. Struct. 11 (2) (2002) 218–229.

    Article  Google Scholar 

  10. [10]

    Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A. and Wagner, M., ‘Structural and functional fatigue of NiTi shape memory alloys’Mater. Sci. Eng., A 378 (1–2) (2004) 24–33.

    Google Scholar 

  11. [11]

    Hornbogen, E., ‘Review: Thermo-mechanical fatigue of shape memory alloys’,J. Mater. Sci.,39 (2) (2004) 385–399.

    Article  Google Scholar 

  12. [12]

    Wagner, M., Sawaguchi, T., Kausträter, G., Höffken, D. and Eggeler, G., ‘Structural fatigue of pseudoelastic NiTi shape memory wires’,Mater. Sci. Eng., A 378 (1–2) (2004) 105–109.

    Google Scholar 

  13. [13]

    Auricchio, F., Faravelli, L., Magonette, G. and Torra, V., ‘Shape Memory Alloys, Advances in Modelling and Applications’ (International Center for Numerical Methods in Engineering, Barcelona, 2001)

    Google Scholar 

  14. [14]

    Matsuzaki, Y. and Naito, H., ‘Macroscopic and microscopic constitutive models of shape memory alloys based on phase interaction energy function, A review’,J. Intell. Mater. Syst. Struct. 15 (2) (2004) 141–155.

    Article  Google Scholar 

  15. [15]

    Liang, C. and Rogers, C. A., ‘One-dimensional thermomechanical constitutive relations for shape memory materials’,J. Intell. Mater. Syst. Struct. 8 (1997) 285–302.

    Google Scholar 

  16. [16]

    Otsuka, K., Xu, Y. and Ren, X., ‘Ti−Ni-based shape memory alloys as smart materials’, in ‘Thermec2003’, Pts 1–5, (Trans Tech Publications, Zurich-Uetikon, 2003) 251–258.

    Google Scholar 

  17. [17]

    Melton, K.N., ‘Ni−Ti based shape memory alloys’, in ‘Engineering Aspects of Shape Memory Alloys’ (Butterworth-Heinemann, London, 1990) 21–35.

    Google Scholar 

  18. [18]

    Huang, W., ‘On the selection of shape memory alloys actuators’,Mater. Des. 23 (1) (2002) 11–19.

    MATH  Google Scholar 

  19. [19]

    Tamarat, K., Stambouli, V., Bouraoui, T. and Dubois, B., ‘Structural study of Fe−Mn−Si and Fe−Mn−Cr shape memory steels’,J. Phys. IV 1 (C4) (1991) 347–353.

    Google Scholar 

  20. [20]

    Kajiwara, S., ‘Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys’,Mater. Sic. Eng., A,273–275 (1999) 67–88.

    Article  Google Scholar 

  21. [21]

    Sato, A., Yamaji, Y. and Mori, T., ‘Physical properties controlling shape memory effect in Fe−Mn−Si alloys’,Acta Metall. 34 (2) (1986) 287–294.

    Article  Google Scholar 

  22. [22]

    Li, H.J. and Dunne, D., ‘New corrosion resistant iron-based shape memory alloys’,ISIJ Int. 37 (6) (1997) 605–609.

    MATH  Google Scholar 

  23. [23]

    Farjami, S., Hiraga, K., and Kubo, H., ‘Shape memory effect and crystallographic investigation in VN containing Fe−Mn−Si−Cr alloys’,Mater. Trans.,45 (3) (2004) 930–935.

    Article  Google Scholar 

  24. [24]

    Lin, C., Gu, N., Liu, Q. and Wen, C., ‘Research on low temperature relaxation characteristics in Fe−Mn−Si-based SMA’,J. Phys. IV 112 (2003) 377–380.

    Google Scholar 

  25. [25]

    Baruj, A., Kikuchi, T., Kajiwara, S. and Shinya, N., ‘Improved shape memory properties and internal structures in Fe− Mn−Si-based alloys containing Nb and C’,J. Phys. IV 112 (2003) 373–376.

    Article  Google Scholar 

  26. [26]

    Yakovenko, P.G., Söderberg, O., Ullakko, K. and Lindroos, V.K., ‘Internal friction and some other properties of shape memory Fe−Mn−Si based alloys’,J. Phys. IV 112 (2003) 397–400.

    Google Scholar 

  27. [27]

    Yoneyama, N., Setoda, T., Kumai, S., Sato, A., Komatsu, M. and Kiritani, M., ‘Structural refinement and strengthening of and Fe−Mn−Si−Cr−Ni shape memory alloy by high-speed rolling’,Mater. Sci. Eng., A 350 (1–2) (2003) 125–132.

    Google Scholar 

  28. [28]

    Kajiwara, S., Baruj, A., Kikuchi, T. and Shinya, N., ‘Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints’, in Proceedings of SPIE, Vol. 5053 (SPIE, San Diego, 2003) 250–261.

    Google Scholar 

  29. [29]

    Wei, Z.G., Sandstrom, R., and Miyazaki, S., ‘Shape-memory materials and hybrid composites for smart system—Part I Shape-memory materials’,J. Mater. Sci. 33 (15) (1998) 3743–3762.

    Article  Google Scholar 

  30. [30]

    Brite Euram MANSIDE Project, ‘Memory Alloys for New Seismic Isolation and Energy Dissipation Devices—Final Project Workshop’, Rome, Italy, 1999.

  31. [31]

    Brite Euram MANSIDE Project, Internet site of the Italian Seismic State Agency— PROG/1999 /manside.

  32. [32]

    ISTECH, ‘Shape Memory Alloy Devices for Seismic Protection of Cultural Heritage Structures’, Proceedings of the Final Workshop, Ispra, Italy, 2000.

  33. [33]

    Cardone, D., Dolce, M., Ponzo, F.C. and Coelho, E., ‘Experimental behaviour of R/C frames retrofitted with dissipating and re-centring braces’,Journal of Earthquake Engineering 8 (3) (2004) 361–396.

    Article  Google Scholar 

  34. [34]

    Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. and Sweeney, S., ‘Steel beam-column connections using shape memory alloys’,J. Struct. Eng., ASCE 130 (5) (2004) 732–740.

    Article  Google Scholar 

  35. [35]

    Graesser, E.J. and Cozzarelli, F.A., ‘Shape memory alloys as new materials for seismic isolation’,J. Eng. Mech., ASCE 117 (11) (1991) 2590–2608.

    Google Scholar 

  36. [36]

    Wittig, P.R. and Cozzarelli, F.A., ‘Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing’, Technical Report NCEER-92-0013 (State University of New York at Buffalo, 1992).

    Google Scholar 

  37. [37]

    Thomson, P., Balas, G.J. and Nalbantoglu, V., ‘Shape memory alloys for augmenting damping of flexible structures’, AIAA-96-3760, Proceedings of AIAA Guidance Navigation and Control Conference, San Diego, CA, 1996.

  38. [38]

    Salichs, J., Hou, Z., and Noori, M., ‘Vibration suppression of structures using passive shape memory alloy energy dissipation devices’,J. Intell. Mat. Syst. Struct. 12 (2001) 671–680.

    Article  Google Scholar 

  39. [39]

    Dolce, M. and Cardone, D., ‘Mechanical behavior of shape memory alloys for seismic applications, 2. Austenite NiTi wires subjected to tension’,Int. J. Mech. Sci. 43 (11) (2001) 2657–2677.

    Article  Google Scholar 

  40. [40]

    Krumme, R. and Hodgson, D.E., ‘Hysteretic damping apparati and methods—US Patent Nr. 5-842-312’, (1998)

  41. [41]

    Castellano, M.G., ‘Seismic protection of the basilica in San Francesco and Assisi’, (only available in italian), (2000), http://

  42. [42]

    Indirli, M., ‘Application of novel anti-seismic devices in the bell tower of the church in San Giorgio a Trignano’, (2000), [only available in Italian], /GLIS/HTML/gn/trignano/smatri.htm.

  43. [43]

    DesRoches, R. and Delemont, M., ‘Seismic retrofit of simply suported bridges using shape memory alloys’,Engineering Structures 24 (3) (2002) 325–332.

    Article  Google Scholar 

  44. [44]

    Wilde, K., Gardoni, P. and Fujino, Y., ‘Base isolation system with shape memory alloy device for elevated highway bridges’,Engineering Structures 22 (3) (2000) 222–229.

    Article  Google Scholar 

  45. [45]

    Sun, S. and Rajapakse, R.K.N.D., ‘Dynamic response of a frame with SMA bracing’, in Proceedings of SPIE, Vol. 5053 (SPIE, San Diego, 2003) 262–270.

    Google Scholar 

  46. [46]

    Nae, F.A., Ikeda, T. and Matsuzaki, Y., ‘The active tuning of a shape memory alloy pseudoelastic property’,Smart Mater. Struct. 13 (3) (2004) 503–511.

    Article  Google Scholar 

  47. [47]

    Shahin, A.R., Meckl, P.H. and Jones, J.D., ‘Modeling of SMA tendons for active control of structures’,J. Intell. Mater. Syst. Struct. 8 (1) (1997) 51–70.

    Google Scholar 

  48. [48]

    Williams, K., Chiu, G. and Bernhard, R., ‘Adaptive-passive absorbers using shape-memory alloys’,J. of Sound and Vibration 249 (5) (2002) 835–848.

    Article  Google Scholar 

  49. [49]

    Liang, C. and Rogers, C.A., ‘Design of shape memory alloy springs with applications in vibration control’,J. Intell. Mater. Syst. Struct. 8 (1997) 314–322.

    Article  Google Scholar 

  50. [50]

    Amato, I. ‘The Sensual City’,New Scientist (1994) 33–36.

  51. [51]

    Maji, A.K. and Negret, I., ‘Smart presstressing with shape-memory alloy’,J. Eng. Mech., ASCE 124 (10) (1998) 1121–1128.

    Article  Google Scholar 

  52. [52]

    Shen, Y.M., Du, Y.L., Sun, B.C. and Li, J.L., ‘A study of SMA used for threaded connections having loosening-proof and anti-break functions’, in ‘Shape Memory Materials and Its Applications’, (Trans Tech Publications, Zürich-Uetikon, 2001) 99–102.

    Google Scholar 

  53. [53]

    Soroushian, P., Ostowari, K., Nossoni A. and Chowdhury, H., ‘Repair and strengthening of concrete structures through application of corrective posttensioning forces with shape memory alloys’,Transportation Research Record (No. 1770) (2001) 20–26.

    Google Scholar 

  54. [54]

    Krstulovic-Opara, N. and Naaman, A.E., ‘Self-stressing fiber composites’,ACI Structural Journal 97 (2) (2000) 335–344.

    Google Scholar 

  55. [55]

    Watanabe, Y., Miyazaki, E. and Okada, H., ‘Enhanced mechanical properties of Fe−Mn−Si−Cr shape memory fiber/plaster smart composite’,Mater. Trans. 43 (5) (2002) 974–983.

    Article  Google Scholar 

  56. [56]

    Miyazaki, E. and Watanabe, Y., ‘Development of shape memory alloy fiber reinforced smart FGMs’, in ‘Functionally Graded Materials VII’ (Trans Tech Publications, Zürich-Uetikon, 2003) 107–111.

    Google Scholar 

  57. [57]

    Deng, Z., Li, Q., Jiu, A. and Li, L., ‘Behavior of concrete driven by uniaxially embedded shape memory alloy actuators’,J. Eng. Mech., ASCE 129 (6) (2003) 697–703.

    Article  Google Scholar 

  58. [58]

    Krstulovic-Opara, N., Nau, J., Wriggers, P. and Krstulovic-Opara, L., ‘Self-actuating SMA-HPFRC fuses for auto-adaptive composite structures’,Computer-Aided Civil and Infrastructure Engineering 18 (1) (2003) 78–94.

    Article  Google Scholar 

  59. [59]

    Czaderski, C. and Motavalli, M., ‘Shape memory alloys in civil engineering—Visions’,SIA-Tec21 (19) (2003), 10–13 [only available in German].

    Google Scholar 

  60. [60]

    Czaderski, C., Hahnebach, B., and Motavalli, M., ’RC beam with variable stiffness and strength’,Construction and Building Materials (accepted for publication in 2005).

  61. [61]

    Wu, S., ‘Active fiber composites’, in ‘High Performance Fiber Reinforced Cement Composites (HPFRC4)’, (RILEM, 2003) 153–157.

  62. [62]

    Parlinska, M., Clech, H., Balta, J.A., Michaud, V., Bidaux, J.E., Manson, J.A.E. and Gotthardt, R., ‘Adaptive composites with embedded shape memory alloys’,J. Phys. IV 11 (2001) 197–204.

    Google Scholar 

  63. [63]

    Tsai, X.Y. and Chen, L.W., ‘Dynamic stability of shape memory alloy wire reinforced composite beam’,Composite Structures 56 (3) (2002) 235–241.

    Article  Google Scholar 

  64. [64]

    Xu, Y., Otsuka, K., Yoshida, H., Hagai, H., Oishi, R., Horikawa, H. and Kishi, T., ‘A new method for fabricating SMA/CFRP smart hybrid composites’,Intermetallics 10 (4) (2002) 361–369.

    Article  MATH  Google Scholar 

  65. [65]

    Wang, X., ‘Shape memory alloy volume fraction of prestretched shape memory alloy wire-reinforced composites for structural damage repair’,Smart Mater. Struct. 11 (4) (2002) 590–595.

    Article  Google Scholar 

  66. [66]

    Wei, Z.G., Sandstrom, R., and Miyazaki, S., ‘Shape memory materials and hybrid composites for smart systems—Part II Shape-memory hybrid composites’,J. Mater. Sci. 33 (15) (1998) 3763–3783.

    Article  Google Scholar 

  67. [67]

    Aizawa, S., Kakizawa, T. and Higasino, M., ‘Case studies of smart materials for civil structures’,Smart Mater. Struct. 7 (5) (1998) 617–626.

    Article  Google Scholar 

  68. [68]

    Teng, J.G., Chen, J.F., Smith, S.T. and Lam, L., ‘FRP-Strengthened RC Structures’, (Wiley, UK, 2002).

    Google Scholar 

  69. [69]

    Krstulovic-Opara, N. and Thiedeman, P.D., ‘Active confinement of concrete members with self-stressing composites’,ACI Materials Journal 97 (3) (2000) 297–308.

    Google Scholar 

  70. [70]

    Moser, K., Bergamini, A., Christen, R. and Czaderski, C., ‘Feasibility of concrete prestressed by shape memory alloy short fibres’Mater. Struct. 38 (279) (2005) 593–600.

    Article  Google Scholar 

Download references

Author information



Additional information

Editorial note Empa is a RILEM Titular Member.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janke, L., Czaderski, C., Motavalli, M. et al. Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas. Mat. Struct. 38, 578–592 (2005).

Download citation


  • Austenite
  • Martensite
  • Shape Memory
  • Shape Memory Alloy
  • Shape Memory Effect