Advertisement

Materials and Structures

, Volume 38, Issue 5, pp 578–592 | Cite as

Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas

  • L. Janke
  • C. Czaderski
  • M. Motavalli
  • J. Ruth
Scientific Reports

Abstract

Shape memory alloys (SMAs) are metallic materials with great potential to enhance civil engineering structures. They are often referred to as smart materials. A basic description of their highly non-linear material behaviour in terms of shape memory effect, superelasticity, martensite damping and variable stiffness is given in this article. It is followed by a brief introduction to Ni−Ti and Fe−Mn−Si SMAs. Pre-existing and new applications in the fields of damping, active vibration control and prestressing or posttensioning of structures with fibres and tendons are being reviewed with regard to civil engineering. Furthermore, the relatively high costs and the problem of retaining posttensioning forces when using some types of SMAs are named. In this regard is Fe−Mn−Si−Cr discussed as potential low cost SMA. A simple model for calculating the activation times of resistive heated SMA actuators or springs is presented. The results and measured data lead to further constrictions. Finally, new ideas for using SMAs in civil engineering structures are proposed in this article such as an improved concept for the active confinement of concrete members. This article is to introduce civil engineers to the world of shape memory alloys and invite them to contribute to their wider use in civil engineering structures.

Keywords

Austenite Martensite Shape Memory Shape Memory Alloy Shape Memory Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les alliages à mémoire de forme (AMF), souvent qualifiés de «matériaux intelligent», présentent un grand potentiel pour l'amélioration des ouvrages de génie civil. Une description de leurs comportements non linéaires, que sont la mémoire de forme, la superélasticité, la capacité d'amortissement de la martensite et la rigidité variable, est donnée. Elle est suivie d'une introduction sur les AMF Ni−Ti et Fe−Mn−Si. Des applications telles que l'amortissement et le contrôle actif des vibrations ou la pré- ou postcontrainte au moyen de fibres et de câbles sont décrites. Les problèmes du coût des AFM et du maintien de la postcontrainte rencontré avec certains AFM sont aussi abordés. L'alliage Fe−Mn−Si−Cr est discuté comme AMF potentiellement bon marché. Un modèle du temps d'activation des actuateurs ou des ressorts en AMF chauffés par résistance est présenté. Cette modélisation et les résultats de mesure montrent que l'utilisation de ces AMF reste soumise à certaines restrictions. Finalement, de nouvelles applications des AMF en génie civil, telles qu'une méthode de confinement actif des éléments en béton, sont présentées. Cet article se propose d'introduire les ingénieurs en génie civil dans l'univers des AMF pour les inciter à contribuer à leur plus large utilisation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Callister, W.D., ‘Materials Science and Engineering: An Introduction’, 6th Edn. (Wiley, New York, 2003).Google Scholar
  2. [2]
    Funakubo, H., ‘Precision Machinery and Robotics, Vol. 1— Shape Memory Alloys’ (Gordon and Breach, 1987).Google Scholar
  3. [3]
    Duerig, T.W., ‘Engineering Aspects of Shape Memory Alloys’, (Butterworth-Heinemann, London, 1990).Google Scholar
  4. [4]
    Otsuka, K. and Wayman, C.M., ‘Shape Memory Materials’ (Cambridge University Press, 1999).Google Scholar
  5. [5]
    Humbeeck, J.V., ‘Shape memory alloys: A material and a technology’,Adv. Eng. Mater. 3 (11) (2001) 837–850.CrossRefGoogle Scholar
  6. [6]
    Otsuka, K. and Kakeshita T., ‘Science and technology of shape-memory alloys. New developments’,Mrs Bulletin 27 (2) (2002) 91–100.Google Scholar
  7. [7]
    Hodgson, D.E., ‘Damping applications of shape-memory alloys’, in ‘Materials Science Forum’394–395 (Trans Tech Publications, Zürich-Uetikon, 2002) 69–74.Google Scholar
  8. [8]
    Humbeeck, J.V., ‘The high damping capacity of shape memory alloys’,Z. Metallkd.,86 (3) (1995) 176–183.Google Scholar
  9. [9]
    Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Baron, I., Suzuki, Y. and Masuda, A., ‘An overview of vibration and seismic applications of NiTi shape memory alloy.Smart Mater. Struct. 11 (2) (2002) 218–229.CrossRefGoogle Scholar
  10. [10]
    Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A. and Wagner, M., ‘Structural and functional fatigue of NiTi shape memory alloys’Mater. Sci. Eng., A 378 (1–2) (2004) 24–33.Google Scholar
  11. [11]
    Hornbogen, E., ‘Review: Thermo-mechanical fatigue of shape memory alloys’,J. Mater. Sci.,39 (2) (2004) 385–399.CrossRefGoogle Scholar
  12. [12]
    Wagner, M., Sawaguchi, T., Kausträter, G., Höffken, D. and Eggeler, G., ‘Structural fatigue of pseudoelastic NiTi shape memory wires’,Mater. Sci. Eng., A 378 (1–2) (2004) 105–109.Google Scholar
  13. [13]
    Auricchio, F., Faravelli, L., Magonette, G. and Torra, V., ‘Shape Memory Alloys, Advances in Modelling and Applications’ (International Center for Numerical Methods in Engineering, Barcelona, 2001)MATHGoogle Scholar
  14. [14]
    Matsuzaki, Y. and Naito, H., ‘Macroscopic and microscopic constitutive models of shape memory alloys based on phase interaction energy function, A review’,J. Intell. Mater. Syst. Struct. 15 (2) (2004) 141–155.CrossRefGoogle Scholar
  15. [15]
    Liang, C. and Rogers, C. A., ‘One-dimensional thermomechanical constitutive relations for shape memory materials’,J. Intell. Mater. Syst. Struct. 8 (1997) 285–302.Google Scholar
  16. [16]
    Otsuka, K., Xu, Y. and Ren, X., ‘Ti−Ni-based shape memory alloys as smart materials’, in ‘Thermec2003’, Pts 1–5, (Trans Tech Publications, Zurich-Uetikon, 2003) 251–258.Google Scholar
  17. [17]
    Melton, K.N., ‘Ni−Ti based shape memory alloys’, in ‘Engineering Aspects of Shape Memory Alloys’ (Butterworth-Heinemann, London, 1990) 21–35.Google Scholar
  18. [18]
    Huang, W., ‘On the selection of shape memory alloys actuators’,Mater. Des. 23 (1) (2002) 11–19.MATHGoogle Scholar
  19. [19]
    Tamarat, K., Stambouli, V., Bouraoui, T. and Dubois, B., ‘Structural study of Fe−Mn−Si and Fe−Mn−Cr shape memory steels’,J. Phys. IV 1 (C4) (1991) 347–353.Google Scholar
  20. [20]
    Kajiwara, S., ‘Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys’,Mater. Sic. Eng., A,273–275 (1999) 67–88.CrossRefGoogle Scholar
  21. [21]
    Sato, A., Yamaji, Y. and Mori, T., ‘Physical properties controlling shape memory effect in Fe−Mn−Si alloys’,Acta Metall. 34 (2) (1986) 287–294.CrossRefGoogle Scholar
  22. [22]
    Li, H.J. and Dunne, D., ‘New corrosion resistant iron-based shape memory alloys’,ISIJ Int. 37 (6) (1997) 605–609.MATHGoogle Scholar
  23. [23]
    Farjami, S., Hiraga, K., and Kubo, H., ‘Shape memory effect and crystallographic investigation in VN containing Fe−Mn−Si−Cr alloys’,Mater. Trans.,45 (3) (2004) 930–935.CrossRefGoogle Scholar
  24. [24]
    Lin, C., Gu, N., Liu, Q. and Wen, C., ‘Research on low temperature relaxation characteristics in Fe−Mn−Si-based SMA’,J. Phys. IV 112 (2003) 377–380.Google Scholar
  25. [25]
    Baruj, A., Kikuchi, T., Kajiwara, S. and Shinya, N., ‘Improved shape memory properties and internal structures in Fe− Mn−Si-based alloys containing Nb and C’,J. Phys. IV 112 (2003) 373–376.CrossRefGoogle Scholar
  26. [26]
    Yakovenko, P.G., Söderberg, O., Ullakko, K. and Lindroos, V.K., ‘Internal friction and some other properties of shape memory Fe−Mn−Si based alloys’,J. Phys. IV 112 (2003) 397–400.Google Scholar
  27. [27]
    Yoneyama, N., Setoda, T., Kumai, S., Sato, A., Komatsu, M. and Kiritani, M., ‘Structural refinement and strengthening of and Fe−Mn−Si−Cr−Ni shape memory alloy by high-speed rolling’,Mater. Sci. Eng., A 350 (1–2) (2003) 125–132.Google Scholar
  28. [28]
    Kajiwara, S., Baruj, A., Kikuchi, T. and Shinya, N., ‘Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints’, in Proceedings of SPIE, Vol. 5053 (SPIE, San Diego, 2003) 250–261.CrossRefGoogle Scholar
  29. [29]
    Wei, Z.G., Sandstrom, R., and Miyazaki, S., ‘Shape-memory materials and hybrid composites for smart system—Part I Shape-memory materials’,J. Mater. Sci. 33 (15) (1998) 3743–3762.CrossRefGoogle Scholar
  30. [30]
    Brite Euram MANSIDE Project, ‘Memory Alloys for New Seismic Isolation and Energy Dissipation Devices—Final Project Workshop’, Rome, Italy, 1999.Google Scholar
  31. [31]
    Brite Euram MANSIDE Project, Internet site of the Italian Seismic State Agency—www.serviziosismico.it/ PROG/1999 /manside.Google Scholar
  32. [32]
    ISTECH, ‘Shape Memory Alloy Devices for Seismic Protection of Cultural Heritage Structures’, Proceedings of the Final Workshop, Ispra, Italy, 2000.Google Scholar
  33. [33]
    Cardone, D., Dolce, M., Ponzo, F.C. and Coelho, E., ‘Experimental behaviour of R/C frames retrofitted with dissipating and re-centring braces’,Journal of Earthquake Engineering 8 (3) (2004) 361–396.CrossRefGoogle Scholar
  34. [34]
    Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. and Sweeney, S., ‘Steel beam-column connections using shape memory alloys’,J. Struct. Eng., ASCE 130 (5) (2004) 732–740.CrossRefGoogle Scholar
  35. [35]
    Graesser, E.J. and Cozzarelli, F.A., ‘Shape memory alloys as new materials for seismic isolation’,J. Eng. Mech., ASCE 117 (11) (1991) 2590–2608.Google Scholar
  36. [36]
    Wittig, P.R. and Cozzarelli, F.A., ‘Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing’, Technical Report NCEER-92-0013 (State University of New York at Buffalo, 1992).Google Scholar
  37. [37]
    Thomson, P., Balas, G.J. and Nalbantoglu, V., ‘Shape memory alloys for augmenting damping of flexible structures’, AIAA-96-3760, Proceedings of AIAA Guidance Navigation and Control Conference, San Diego, CA, 1996.Google Scholar
  38. [38]
    Salichs, J., Hou, Z., and Noori, M., ‘Vibration suppression of structures using passive shape memory alloy energy dissipation devices’,J. Intell. Mat. Syst. Struct. 12 (2001) 671–680.CrossRefGoogle Scholar
  39. [39]
    Dolce, M. and Cardone, D., ‘Mechanical behavior of shape memory alloys for seismic applications, 2. Austenite NiTi wires subjected to tension’,Int. J. Mech. Sci. 43 (11) (2001) 2657–2677.CrossRefGoogle Scholar
  40. [40]
    Krumme, R. and Hodgson, D.E., ‘Hysteretic damping apparati and methods—US Patent Nr. 5-842-312’, (1998)Google Scholar
  41. [41]
    Castellano, M.G., ‘Seismic protection of the basilica in San Francesco and Assisi’, (only available in italian), (2000), http:// rin365.arcoveggio.enea.it/GLIS/HTML/gn/assisi/g5assisi.htm.Google Scholar
  42. [42]
    Indirli, M., ‘Application of novel anti-seismic devices in the bell tower of the church in San Giorgio a Trignano’, (2000), [only available in Italian], http://rin365.arcoveggio.enea.it /GLIS/HTML/gn/trignano/smatri.htm.Google Scholar
  43. [43]
    DesRoches, R. and Delemont, M., ‘Seismic retrofit of simply suported bridges using shape memory alloys’,Engineering Structures 24 (3) (2002) 325–332.CrossRefGoogle Scholar
  44. [44]
    Wilde, K., Gardoni, P. and Fujino, Y., ‘Base isolation system with shape memory alloy device for elevated highway bridges’,Engineering Structures 22 (3) (2000) 222–229.CrossRefGoogle Scholar
  45. [45]
    Sun, S. and Rajapakse, R.K.N.D., ‘Dynamic response of a frame with SMA bracing’, in Proceedings of SPIE, Vol. 5053 (SPIE, San Diego, 2003) 262–270.CrossRefGoogle Scholar
  46. [46]
    Nae, F.A., Ikeda, T. and Matsuzaki, Y., ‘The active tuning of a shape memory alloy pseudoelastic property’,Smart Mater. Struct. 13 (3) (2004) 503–511.CrossRefGoogle Scholar
  47. [47]
    Shahin, A.R., Meckl, P.H. and Jones, J.D., ‘Modeling of SMA tendons for active control of structures’,J. Intell. Mater. Syst. Struct. 8 (1) (1997) 51–70.Google Scholar
  48. [48]
    Williams, K., Chiu, G. and Bernhard, R., ‘Adaptive-passive absorbers using shape-memory alloys’,J. of Sound and Vibration 249 (5) (2002) 835–848.CrossRefGoogle Scholar
  49. [49]
    Liang, C. and Rogers, C.A., ‘Design of shape memory alloy springs with applications in vibration control’,J. Intell. Mater. Syst. Struct. 8 (1997) 314–322.CrossRefGoogle Scholar
  50. [50]
    Amato, I. ‘The Sensual City’,New Scientist (1994) 33–36.Google Scholar
  51. [51]
    Maji, A.K. and Negret, I., ‘Smart presstressing with shape-memory alloy’,J. Eng. Mech., ASCE 124 (10) (1998) 1121–1128.CrossRefGoogle Scholar
  52. [52]
    Shen, Y.M., Du, Y.L., Sun, B.C. and Li, J.L., ‘A study of SMA used for threaded connections having loosening-proof and anti-break functions’, in ‘Shape Memory Materials and Its Applications’, (Trans Tech Publications, Zürich-Uetikon, 2001) 99–102.Google Scholar
  53. [53]
    Soroushian, P., Ostowari, K., Nossoni A. and Chowdhury, H., ‘Repair and strengthening of concrete structures through application of corrective posttensioning forces with shape memory alloys’,Transportation Research Record (No. 1770) (2001) 20–26.Google Scholar
  54. [54]
    Krstulovic-Opara, N. and Naaman, A.E., ‘Self-stressing fiber composites’,ACI Structural Journal 97 (2) (2000) 335–344.Google Scholar
  55. [55]
    Watanabe, Y., Miyazaki, E. and Okada, H., ‘Enhanced mechanical properties of Fe−Mn−Si−Cr shape memory fiber/plaster smart composite’,Mater. Trans. 43 (5) (2002) 974–983.CrossRefGoogle Scholar
  56. [56]
    Miyazaki, E. and Watanabe, Y., ‘Development of shape memory alloy fiber reinforced smart FGMs’, in ‘Functionally Graded Materials VII’ (Trans Tech Publications, Zürich-Uetikon, 2003) 107–111.Google Scholar
  57. [57]
    Deng, Z., Li, Q., Jiu, A. and Li, L., ‘Behavior of concrete driven by uniaxially embedded shape memory alloy actuators’,J. Eng. Mech., ASCE 129 (6) (2003) 697–703.CrossRefGoogle Scholar
  58. [58]
    Krstulovic-Opara, N., Nau, J., Wriggers, P. and Krstulovic-Opara, L., ‘Self-actuating SMA-HPFRC fuses for auto-adaptive composite structures’,Computer-Aided Civil and Infrastructure Engineering 18 (1) (2003) 78–94.CrossRefGoogle Scholar
  59. [59]
    Czaderski, C. and Motavalli, M., ‘Shape memory alloys in civil engineering—Visions’,SIA-Tec21 (19) (2003), 10–13 [only available in German].Google Scholar
  60. [60]
    Czaderski, C., Hahnebach, B., and Motavalli, M., ’RC beam with variable stiffness and strength’,Construction and Building Materials (accepted for publication in 2005).Google Scholar
  61. [61]
    Wu, S., ‘Active fiber composites’, in ‘High Performance Fiber Reinforced Cement Composites (HPFRC4)’, (RILEM, 2003) 153–157.Google Scholar
  62. [62]
    Parlinska, M., Clech, H., Balta, J.A., Michaud, V., Bidaux, J.E., Manson, J.A.E. and Gotthardt, R., ‘Adaptive composites with embedded shape memory alloys’,J. Phys. IV 11 (2001) 197–204.Google Scholar
  63. [63]
    Tsai, X.Y. and Chen, L.W., ‘Dynamic stability of shape memory alloy wire reinforced composite beam’,Composite Structures 56 (3) (2002) 235–241.CrossRefGoogle Scholar
  64. [64]
    Xu, Y., Otsuka, K., Yoshida, H., Hagai, H., Oishi, R., Horikawa, H. and Kishi, T., ‘A new method for fabricating SMA/CFRP smart hybrid composites’,Intermetallics 10 (4) (2002) 361–369.CrossRefMATHGoogle Scholar
  65. [65]
    Wang, X., ‘Shape memory alloy volume fraction of prestretched shape memory alloy wire-reinforced composites for structural damage repair’,Smart Mater. Struct. 11 (4) (2002) 590–595.CrossRefGoogle Scholar
  66. [66]
    Wei, Z.G., Sandstrom, R., and Miyazaki, S., ‘Shape memory materials and hybrid composites for smart systems—Part II Shape-memory hybrid composites’,J. Mater. Sci. 33 (15) (1998) 3763–3783.CrossRefGoogle Scholar
  67. [67]
    Aizawa, S., Kakizawa, T. and Higasino, M., ‘Case studies of smart materials for civil structures’,Smart Mater. Struct. 7 (5) (1998) 617–626.CrossRefGoogle Scholar
  68. [68]
    Teng, J.G., Chen, J.F., Smith, S.T. and Lam, L., ‘FRP-Strengthened RC Structures’, (Wiley, UK, 2002).Google Scholar
  69. [69]
    Krstulovic-Opara, N. and Thiedeman, P.D., ‘Active confinement of concrete members with self-stressing composites’,ACI Materials Journal 97 (3) (2000) 297–308.Google Scholar
  70. [70]
    Moser, K., Bergamini, A., Christen, R. and Czaderski, C., ‘Feasibility of concrete prestressed by shape memory alloy short fibres’Mater. Struct. 38 (279) (2005) 593–600.CrossRefGoogle Scholar

Copyright information

© RILEM 2005

Authors and Affiliations

  • L. Janke
    • 1
    • 2
  • C. Czaderski
    • 1
  • M. Motavalli
    • 1
  • J. Ruth
    • 2
  1. 1.Structural Engineering Research LaboratoryEmpa, Swiss Federal Laboratories for Materials Testing and ResearchDübendorfSwitzerland
  2. 2.Faculty of Civil EngineeringBauhaus-University WeimarGermany

Personalised recommendations