Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas

  • 3718 Accesses

  • 59 Citations

Abstract

Shape memory alloys (SMAs) are metallic materials with great potential to enhance civil engineering structures. They are often referred to as smart materials. A basic description of their highly non-linear material behaviour in terms of shape memory effect, superelasticity, martensite damping and variable stiffness is given in this article. It is followed by a brief introduction to Ni−Ti and Fe−Mn−Si SMAs. Pre-existing and new applications in the fields of damping, active vibration control and prestressing or posttensioning of structures with fibres and tendons are being reviewed with regard to civil engineering. Furthermore, the relatively high costs and the problem of retaining posttensioning forces when using some types of SMAs are named. In this regard is Fe−Mn−Si−Cr discussed as potential low cost SMA. A simple model for calculating the activation times of resistive heated SMA actuators or springs is presented. The results and measured data lead to further constrictions. Finally, new ideas for using SMAs in civil engineering structures are proposed in this article such as an improved concept for the active confinement of concrete members. This article is to introduce civil engineers to the world of shape memory alloys and invite them to contribute to their wider use in civil engineering structures.

Résumé

Les alliages à mémoire de forme (AMF), souvent qualifiés de «matériaux intelligent», présentent un grand potentiel pour l'amélioration des ouvrages de génie civil. Une description de leurs comportements non linéaires, que sont la mémoire de forme, la superélasticité, la capacité d'amortissement de la martensite et la rigidité variable, est donnée. Elle est suivie d'une introduction sur les AMF Ni−Ti et Fe−Mn−Si. Des applications telles que l'amortissement et le contrôle actif des vibrations ou la pré- ou postcontrainte au moyen de fibres et de câbles sont décrites. Les problèmes du coût des AFM et du maintien de la postcontrainte rencontré avec certains AFM sont aussi abordés. L'alliage Fe−Mn−Si−Cr est discuté comme AMF potentiellement bon marché. Un modèle du temps d'activation des actuateurs ou des ressorts en AMF chauffés par résistance est présenté. Cette modélisation et les résultats de mesure montrent que l'utilisation de ces AMF reste soumise à certaines restrictions. Finalement, de nouvelles applications des AMF en génie civil, telles qu'une méthode de confinement actif des éléments en béton, sont présentées. Cet article se propose d'introduire les ingénieurs en génie civil dans l'univers des AMF pour les inciter à contribuer à leur plus large utilisation.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Callister, W.D., ‘Materials Science and Engineering: An Introduction’, 6th Edn. (Wiley, New York, 2003).

  2. [2]

    Funakubo, H., ‘Precision Machinery and Robotics, Vol. 1— Shape Memory Alloys’ (Gordon and Breach, 1987).

  3. [3]

    Duerig, T.W., ‘Engineering Aspects of Shape Memory Alloys’, (Butterworth-Heinemann, London, 1990).

  4. [4]

    Otsuka, K. and Wayman, C.M., ‘Shape Memory Materials’ (Cambridge University Press, 1999).

  5. [5]

    Humbeeck, J.V., ‘Shape memory alloys: A material and a technology’,Adv. Eng. Mater. 3 (11) (2001) 837–850.

  6. [6]

    Otsuka, K. and Kakeshita T., ‘Science and technology of shape-memory alloys. New developments’,Mrs Bulletin 27 (2) (2002) 91–100.

  7. [7]

    Hodgson, D.E., ‘Damping applications of shape-memory alloys’, in ‘Materials Science Forum’394–395 (Trans Tech Publications, Zürich-Uetikon, 2002) 69–74.

  8. [8]

    Humbeeck, J.V., ‘The high damping capacity of shape memory alloys’,Z. Metallkd.,86 (3) (1995) 176–183.

  9. [9]

    Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Baron, I., Suzuki, Y. and Masuda, A., ‘An overview of vibration and seismic applications of NiTi shape memory alloy.Smart Mater. Struct. 11 (2) (2002) 218–229.

  10. [10]

    Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A. and Wagner, M., ‘Structural and functional fatigue of NiTi shape memory alloys’Mater. Sci. Eng., A 378 (1–2) (2004) 24–33.

  11. [11]

    Hornbogen, E., ‘Review: Thermo-mechanical fatigue of shape memory alloys’,J. Mater. Sci.,39 (2) (2004) 385–399.

  12. [12]

    Wagner, M., Sawaguchi, T., Kausträter, G., Höffken, D. and Eggeler, G., ‘Structural fatigue of pseudoelastic NiTi shape memory wires’,Mater. Sci. Eng., A 378 (1–2) (2004) 105–109.

  13. [13]

    Auricchio, F., Faravelli, L., Magonette, G. and Torra, V., ‘Shape Memory Alloys, Advances in Modelling and Applications’ (International Center for Numerical Methods in Engineering, Barcelona, 2001)

  14. [14]

    Matsuzaki, Y. and Naito, H., ‘Macroscopic and microscopic constitutive models of shape memory alloys based on phase interaction energy function, A review’,J. Intell. Mater. Syst. Struct. 15 (2) (2004) 141–155.

  15. [15]

    Liang, C. and Rogers, C. A., ‘One-dimensional thermomechanical constitutive relations for shape memory materials’,J. Intell. Mater. Syst. Struct. 8 (1997) 285–302.

  16. [16]

    Otsuka, K., Xu, Y. and Ren, X., ‘Ti−Ni-based shape memory alloys as smart materials’, in ‘Thermec2003’, Pts 1–5, (Trans Tech Publications, Zurich-Uetikon, 2003) 251–258.

  17. [17]

    Melton, K.N., ‘Ni−Ti based shape memory alloys’, in ‘Engineering Aspects of Shape Memory Alloys’ (Butterworth-Heinemann, London, 1990) 21–35.

  18. [18]

    Huang, W., ‘On the selection of shape memory alloys actuators’,Mater. Des. 23 (1) (2002) 11–19.

  19. [19]

    Tamarat, K., Stambouli, V., Bouraoui, T. and Dubois, B., ‘Structural study of Fe−Mn−Si and Fe−Mn−Cr shape memory steels’,J. Phys. IV 1 (C4) (1991) 347–353.

  20. [20]

    Kajiwara, S., ‘Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys’,Mater. Sic. Eng., A,273–275 (1999) 67–88.

  21. [21]

    Sato, A., Yamaji, Y. and Mori, T., ‘Physical properties controlling shape memory effect in Fe−Mn−Si alloys’,Acta Metall. 34 (2) (1986) 287–294.

  22. [22]

    Li, H.J. and Dunne, D., ‘New corrosion resistant iron-based shape memory alloys’,ISIJ Int. 37 (6) (1997) 605–609.

  23. [23]

    Farjami, S., Hiraga, K., and Kubo, H., ‘Shape memory effect and crystallographic investigation in VN containing Fe−Mn−Si−Cr alloys’,Mater. Trans.,45 (3) (2004) 930–935.

  24. [24]

    Lin, C., Gu, N., Liu, Q. and Wen, C., ‘Research on low temperature relaxation characteristics in Fe−Mn−Si-based SMA’,J. Phys. IV 112 (2003) 377–380.

  25. [25]

    Baruj, A., Kikuchi, T., Kajiwara, S. and Shinya, N., ‘Improved shape memory properties and internal structures in Fe− Mn−Si-based alloys containing Nb and C’,J. Phys. IV 112 (2003) 373–376.

  26. [26]

    Yakovenko, P.G., Söderberg, O., Ullakko, K. and Lindroos, V.K., ‘Internal friction and some other properties of shape memory Fe−Mn−Si based alloys’,J. Phys. IV 112 (2003) 397–400.

  27. [27]

    Yoneyama, N., Setoda, T., Kumai, S., Sato, A., Komatsu, M. and Kiritani, M., ‘Structural refinement and strengthening of and Fe−Mn−Si−Cr−Ni shape memory alloy by high-speed rolling’,Mater. Sci. Eng., A 350 (1–2) (2003) 125–132.

  28. [28]

    Kajiwara, S., Baruj, A., Kikuchi, T. and Shinya, N., ‘Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints’, in Proceedings of SPIE, Vol. 5053 (SPIE, San Diego, 2003) 250–261.

  29. [29]

    Wei, Z.G., Sandstrom, R., and Miyazaki, S., ‘Shape-memory materials and hybrid composites for smart system—Part I Shape-memory materials’,J. Mater. Sci. 33 (15) (1998) 3743–3762.

  30. [30]

    Brite Euram MANSIDE Project, ‘Memory Alloys for New Seismic Isolation and Energy Dissipation Devices—Final Project Workshop’, Rome, Italy, 1999.

  31. [31]

    Brite Euram MANSIDE Project, Internet site of the Italian Seismic State Agency—www.serviziosismico.it/ PROG/1999 /manside.

  32. [32]

    ISTECH, ‘Shape Memory Alloy Devices for Seismic Protection of Cultural Heritage Structures’, Proceedings of the Final Workshop, Ispra, Italy, 2000.

  33. [33]

    Cardone, D., Dolce, M., Ponzo, F.C. and Coelho, E., ‘Experimental behaviour of R/C frames retrofitted with dissipating and re-centring braces’,Journal of Earthquake Engineering 8 (3) (2004) 361–396.

  34. [34]

    Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. and Sweeney, S., ‘Steel beam-column connections using shape memory alloys’,J. Struct. Eng., ASCE 130 (5) (2004) 732–740.

  35. [35]

    Graesser, E.J. and Cozzarelli, F.A., ‘Shape memory alloys as new materials for seismic isolation’,J. Eng. Mech., ASCE 117 (11) (1991) 2590–2608.

  36. [36]

    Wittig, P.R. and Cozzarelli, F.A., ‘Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing’, Technical Report NCEER-92-0013 (State University of New York at Buffalo, 1992).

  37. [37]

    Thomson, P., Balas, G.J. and Nalbantoglu, V., ‘Shape memory alloys for augmenting damping of flexible structures’, AIAA-96-3760, Proceedings of AIAA Guidance Navigation and Control Conference, San Diego, CA, 1996.

  38. [38]

    Salichs, J., Hou, Z., and Noori, M., ‘Vibration suppression of structures using passive shape memory alloy energy dissipation devices’,J. Intell. Mat. Syst. Struct. 12 (2001) 671–680.

  39. [39]

    Dolce, M. and Cardone, D., ‘Mechanical behavior of shape memory alloys for seismic applications, 2. Austenite NiTi wires subjected to tension’,Int. J. Mech. Sci. 43 (11) (2001) 2657–2677.

  40. [40]

    Krumme, R. and Hodgson, D.E., ‘Hysteretic damping apparati and methods—US Patent Nr. 5-842-312’, (1998)

  41. [41]

    Castellano, M.G., ‘Seismic protection of the basilica in San Francesco and Assisi’, (only available in italian), (2000), http:// rin365.arcoveggio.enea.it/GLIS/HTML/gn/assisi/g5assisi.htm.

  42. [42]

    Indirli, M., ‘Application of novel anti-seismic devices in the bell tower of the church in San Giorgio a Trignano’, (2000), [only available in Italian], http://rin365.arcoveggio.enea.it /GLIS/HTML/gn/trignano/smatri.htm.

  43. [43]

    DesRoches, R. and Delemont, M., ‘Seismic retrofit of simply suported bridges using shape memory alloys’,Engineering Structures 24 (3) (2002) 325–332.

  44. [44]

    Wilde, K., Gardoni, P. and Fujino, Y., ‘Base isolation system with shape memory alloy device for elevated highway bridges’,Engineering Structures 22 (3) (2000) 222–229.

  45. [45]

    Sun, S. and Rajapakse, R.K.N.D., ‘Dynamic response of a frame with SMA bracing’, in Proceedings of SPIE, Vol. 5053 (SPIE, San Diego, 2003) 262–270.

  46. [46]

    Nae, F.A., Ikeda, T. and Matsuzaki, Y., ‘The active tuning of a shape memory alloy pseudoelastic property’,Smart Mater. Struct. 13 (3) (2004) 503–511.

  47. [47]

    Shahin, A.R., Meckl, P.H. and Jones, J.D., ‘Modeling of SMA tendons for active control of structures’,J. Intell. Mater. Syst. Struct. 8 (1) (1997) 51–70.

  48. [48]

    Williams, K., Chiu, G. and Bernhard, R., ‘Adaptive-passive absorbers using shape-memory alloys’,J. of Sound and Vibration 249 (5) (2002) 835–848.

  49. [49]

    Liang, C. and Rogers, C.A., ‘Design of shape memory alloy springs with applications in vibration control’,J. Intell. Mater. Syst. Struct. 8 (1997) 314–322.

  50. [50]

    Amato, I. ‘The Sensual City’,New Scientist (1994) 33–36.

  51. [51]

    Maji, A.K. and Negret, I., ‘Smart presstressing with shape-memory alloy’,J. Eng. Mech., ASCE 124 (10) (1998) 1121–1128.

  52. [52]

    Shen, Y.M., Du, Y.L., Sun, B.C. and Li, J.L., ‘A study of SMA used for threaded connections having loosening-proof and anti-break functions’, in ‘Shape Memory Materials and Its Applications’, (Trans Tech Publications, Zürich-Uetikon, 2001) 99–102.

  53. [53]

    Soroushian, P., Ostowari, K., Nossoni A. and Chowdhury, H., ‘Repair and strengthening of concrete structures through application of corrective posttensioning forces with shape memory alloys’,Transportation Research Record (No. 1770) (2001) 20–26.

  54. [54]

    Krstulovic-Opara, N. and Naaman, A.E., ‘Self-stressing fiber composites’,ACI Structural Journal 97 (2) (2000) 335–344.

  55. [55]

    Watanabe, Y., Miyazaki, E. and Okada, H., ‘Enhanced mechanical properties of Fe−Mn−Si−Cr shape memory fiber/plaster smart composite’,Mater. Trans. 43 (5) (2002) 974–983.

  56. [56]

    Miyazaki, E. and Watanabe, Y., ‘Development of shape memory alloy fiber reinforced smart FGMs’, in ‘Functionally Graded Materials VII’ (Trans Tech Publications, Zürich-Uetikon, 2003) 107–111.

  57. [57]

    Deng, Z., Li, Q., Jiu, A. and Li, L., ‘Behavior of concrete driven by uniaxially embedded shape memory alloy actuators’,J. Eng. Mech., ASCE 129 (6) (2003) 697–703.

  58. [58]

    Krstulovic-Opara, N., Nau, J., Wriggers, P. and Krstulovic-Opara, L., ‘Self-actuating SMA-HPFRC fuses for auto-adaptive composite structures’,Computer-Aided Civil and Infrastructure Engineering 18 (1) (2003) 78–94.

  59. [59]

    Czaderski, C. and Motavalli, M., ‘Shape memory alloys in civil engineering—Visions’,SIA-Tec21 (19) (2003), 10–13 [only available in German].

  60. [60]

    Czaderski, C., Hahnebach, B., and Motavalli, M., ’RC beam with variable stiffness and strength’,Construction and Building Materials (accepted for publication in 2005).

  61. [61]

    Wu, S., ‘Active fiber composites’, in ‘High Performance Fiber Reinforced Cement Composites (HPFRC4)’, (RILEM, 2003) 153–157.

  62. [62]

    Parlinska, M., Clech, H., Balta, J.A., Michaud, V., Bidaux, J.E., Manson, J.A.E. and Gotthardt, R., ‘Adaptive composites with embedded shape memory alloys’,J. Phys. IV 11 (2001) 197–204.

  63. [63]

    Tsai, X.Y. and Chen, L.W., ‘Dynamic stability of shape memory alloy wire reinforced composite beam’,Composite Structures 56 (3) (2002) 235–241.

  64. [64]

    Xu, Y., Otsuka, K., Yoshida, H., Hagai, H., Oishi, R., Horikawa, H. and Kishi, T., ‘A new method for fabricating SMA/CFRP smart hybrid composites’,Intermetallics 10 (4) (2002) 361–369.

  65. [65]

    Wang, X., ‘Shape memory alloy volume fraction of prestretched shape memory alloy wire-reinforced composites for structural damage repair’,Smart Mater. Struct. 11 (4) (2002) 590–595.

  66. [66]

    Wei, Z.G., Sandstrom, R., and Miyazaki, S., ‘Shape memory materials and hybrid composites for smart systems—Part II Shape-memory hybrid composites’,J. Mater. Sci. 33 (15) (1998) 3763–3783.

  67. [67]

    Aizawa, S., Kakizawa, T. and Higasino, M., ‘Case studies of smart materials for civil structures’,Smart Mater. Struct. 7 (5) (1998) 617–626.

  68. [68]

    Teng, J.G., Chen, J.F., Smith, S.T. and Lam, L., ‘FRP-Strengthened RC Structures’, (Wiley, UK, 2002).

  69. [69]

    Krstulovic-Opara, N. and Thiedeman, P.D., ‘Active confinement of concrete members with self-stressing composites’,ACI Materials Journal 97 (3) (2000) 297–308.

  70. [70]

    Moser, K., Bergamini, A., Christen, R. and Czaderski, C., ‘Feasibility of concrete prestressed by shape memory alloy short fibres’Mater. Struct. 38 (279) (2005) 593–600.

Download references

Author information

Additional information

Editorial note Empa is a RILEM Titular Member.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janke, L., Czaderski, C., Motavalli, M. et al. Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas. Mat. Struct. 38, 578–592 (2005). https://doi.org/10.1007/BF02479550

Download citation

Keywords

  • Austenite
  • Martensite
  • Shape Memory
  • Shape Memory Alloy
  • Shape Memory Effect