Skip to main content
Log in

Passive damping of cables with MR dampers

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper describes the measured damping characteristics of a cable with perpendicularly attached magnetorheological fluid damper. First, the damping of the free cable is measured for reference. Then, the magnetorheological fluid damper is connected to the cable in order to measure the resulting damping at different constant damper current levels. The experimental data shows clearly that the optimal current level providing maximum additional damping to one targeted mode is in inverse ratio to the mode number. Since the force trajectory at constant current of the MR damper under consideration describes nearly a Coulomb friction, the viscosity of an ideal viscous damper dissipating the same amount of energy is estimated. Also this equivalent viscosity depends in inverse ratio on the mode number. If the control target is maximum damping of several modes, the damper current hardly depends on the control target. Furthermore, the measurements demonstrate that external dampers lead to an increase of the structural resonance frequencies since MR dampers producing large forces at high current levels represent additional, fairly stiff supports. This is in contradiction to enhanced structural damping which evokes decreasing resonance frequencies.

Résumé

Cette publication décrit les caractéristiques d'amortissement mesurées sur un câble équipé d'un amortisseur à fluide magnétorhéologique (MR). L'amortissement du câble libre excité à l'aide d'un générateur de fonction est tout d'abord mesuré à titre de référence. Ensuite l'amortisseur MR est monté perpendiculairement sur le câble et l'amortissement du câble est mesuré pour différents niveaux de courant constant. Les résultats de mesure montrent clairement que le courant constant optimal pour obtenir un amortissement maximal d'un mode propre de vibration déterminé est inversement proportionnel au rang de ce mode. La trajectoire de la force de l'amortisseur MR utilisé décrivant pour un courant constant approximativement un frottement de Coulomb, il est possible d'estimer la viscosité équivalente d'un amortisseur visqueux dissipant la même quantité d'énergie. Cette viscosité plusieurs modes de vibration propres, la valeur optimale du courant constant est alors quasiment indépendante de l'amortissement recherché. Les mesures réalisées montrent en outre que les amortisseurs externes conduisent à une élévation des fréquences de résonance de la structure sur laquelle ils sont appliqués; ceci s'explique par le fait que, avec les courants élevés utilisés, les amortisseurs MR produisent des forces puissantes et constituent ainsi des appuis supplémentaires assez rigides. Ceci à l'inverse de l'amortissement structural qui conduit lui à des fréquences de résonance un peu plus basses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Z.-D., Shen, Y.-D. and Guo, Y.-Q., ‘Semi-active control of structures incorporated with magnetorheological dampers using neural networks’,Journal of Smart Materials and Structures 12 (1) (2003) 80–87.

    Article  MathSciNet  Google Scholar 

  2. Spencer Jr., B.F. and Nagarajaiah, S., ‘State of the Art of Structural Control’,Journal of Structural Engineering 129 (8) (2003) 845–856.

    Article  Google Scholar 

  3. Subramanian, P., ‘Vibration suppression of symmetric laminated composite beams’,Journal of Smart Materials and Structures 11 (6) (2002) 880–885.

    Article  Google Scholar 

  4. Gordaninejad, F., Saiidi, M., Hansen, B.C., Ericksen, E.O. and Chang, F.-K., ‘Magneto-rheological fluid dampers for control of bridges’,Journal of Intelligent Material Systems and Structures 13 (2/3) (2002) 167–180.

    Google Scholar 

  5. Ko, J.M., Zheng, G., Chen, Z.Q. and Ni, Y.Q., ‘Field vibration tests of bridge stay cables incorporated with magneto-rheological (MR) dampers’, Proceedings of the International Conference on Smart Structures and Materials 2002: Smart Systems of Bridges, Structures, and Highways, S.-C. Liu and Darryll J. Pines (eds.), Proceedings of SPIE (publ.), Vol. 4696, 30–40.

  6. Weber, F., Feltrin, G., Motavalli, M. and Aalderink, B.J., ‘Cable Vibration Mitigation Using Controlled Magnetorheological Fluid Dampers: A Theoretical and Experimental Investigation’, Proceedings of the International Conference on Footbridge, Paris, France, November 20–22 2002, AFGC-OTUA (eds.), on CD.

  7. Krenk, S., ‘Vibrations of a taut cable with an external damper’,Journal of Applied Mechanics 67 (2000) 772–776.

    Article  Google Scholar 

  8. Main, J.A. and Jones, N.P., ‘Evaluation of viscous dampers for stay cable vibration mitigation’,Journal of Bridge Engineering 6 (6) (2001) 385–397.

    Article  Google Scholar 

  9. ‘Friction damper testing. Long cables: high results’,The VSL News Magazine (issue 1) (2004) 21.

  10. Weber, B., ‘Damping of vibrating footbriges’, Proceedings of the International Conference on Footbridge, Paris, France, 20–22 November 2002, AFGC-OTUA (eds.), on CD.

  11. Yang, J.N., Lei, Y., Lin, S. and Huang, N., ‘Identification of natural frequencies and dampings of in situ tall buildings using ambient wind vibration data’,Journal of Engineering Mechanics 130 (5) (2004) 570–577.

    Article  Google Scholar 

  12. Bachmann, H.et al., ‘Vibration Problems in Structures: Practical Guidelines’, ISBN 3-7643-5148-9 (Birkhäuser Verlag Basel, 1995).

  13. Tse, T. and Chang, C.C., ‘Shear-Mode rotary magnetorheological damper for small-scale structural control experiments’,Journal of Structural Engineering 130 (6) (2004) 904–911.

    Article  Google Scholar 

  14. Yang, G., Spencer Jr., B.F., Jung, H.-J. and Carlson, J.D., ‘Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications’,Journal of Engineering Mechanics 130 (9) (2004) 1107–1114.

    Article  Google Scholar 

  15. Sims, N.D., Holmes, N.J. and Stanway, R., ‘A unified modelling and model updating procedure for electrorheological and magnetorheological vibration dampers’,Journal of Smart Materials and Structures 13 (2004) 100–121.

    Article  Google Scholar 

  16. Dominguez, A., Sedaghati, R. and Stiharu, I., ‘Modelling the hysteresis phenomenon of magnetorheological dampers’,Journal of Smart Materials and Structures 13 (2004) 1351–1361.

    Article  Google Scholar 

  17. Occhiuzzi, A., Spizzuoco, M. and Serino, G., ‘Experimental analysis of magnetorheological dampers for structural control’,Journal of Smart Materials and Structures 12 (5) (2003) 703–711.

    Article  Google Scholar 

  18. Liao, W.H. and Lai, C.Y., ‘Harmonic Analysis of a Magnetorheological Damper for Vibration Control’,Journal of Smart Materials and Structures 11 (2) (2002) 288–296.

    Article  Google Scholar 

  19. Weiss, K.D., Carlson, J.D. and Nixon, D. A., ‘Viscoelastic properties of magneto- and electro-rheological fluids’,Journal of Intelligent Material Systems and Structures 5 (11) (1994) 772–775.

    Google Scholar 

  20. Yang, G., ‘Large-scale magnetorheological fluid damper for vibration mitigation: Modeling, testing and control’, PhD dissertation, University of Notre Dame, Notre Dame, Indiana, 2001.

    Google Scholar 

  21. Bassam, S.A., Weber, F. and Motavalli, M., ‘Mitigation of cable vibrations using rubber bushings and viscous dampers’, Proceedings of the 11th International Meeting on Low Frequency Noise and Vibration and its Control, August 30th to September 1st, 2004, Maastricht, The Netherlands, 1–14.

  22. Oyadiji, S.O., ‘Controlling tube vibration using an electro-rheological fluid’,Journal of Intelligent Material Systems and Structures 14 (2) (2003) 113–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Empa is a RILEM Titular Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, F., Feltrin, G. & Motavalli, M. Passive damping of cables with MR dampers. Mat. Struct. 38, 568–577 (2005). https://doi.org/10.1007/BF02479549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479549

Keywords

Navigation