Skip to main content
Log in

Experimental and analytical studies of innovative prestressed concrete box-girder bridges

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents experimental and analytical results of four scaled prestressed concrete box-girder bridges with corrugated steel webs. The location of prestressing strands at both ends of the specimens and the thickness of end diaphragms are the two major parameters. Based on the experimental results of all four specimens, their seismic behavior is critically examined, including hysteretic loops, ductility factor, dissipated energy, and failure mode, etc. It was found that both the thickness of end diaphragms and the location of prestressing strands at both ends of the specimens are insignificant when the specimens failed at the mid-span due to concrete crushing, and the proposed analytical model can be used to predict the load-displacement relationship of such bridges.

Résumé

L’article présente les résultats expérimentaux et analytiques de quatre ponts tubulaires en béton précontraint’ à échelle ayant des âmes en acier ondulé. La présence de torons de précontrainte aux deux extrémités des échantillons et l’épaisseur des diaphragmes des extrémités constituent les deux principaux paramètres. Basé sur les résultats expérimentaux des quatre échantillons, leur comportement sismique a été examiné de façon critique, incluant des cycles d’hystérésis, le facteur de ductilité, la dissipation d’énergie, le mode de rupture, etc. Il en a résulté que l’épaisseur des diaphragmes des extrémités ainsi que la présence de torons de précontrainte aux deux extrémités des échantillons étaient insignifiantes lorsque les échantillons subissaient une rupture à mi-travée en raison du broyage du béton, et que le modèle analytique proposé pouvait être utilisé pour prévoir la relation charge-déplacement de tels ponts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimm, R. and Zink, M., ‘New Bridges for High-Speed Trains’, Darmstadt Concrete, Institut für Massivbau, Technische Universität Darmstadt, Germany, Vol. 7, 1992, 141–153.

    Google Scholar 

  2. Cheyrezy, M. and Combault, J., ‘Composite Bridges with Corrugated Steel Webs-Achievements and Prospects,’ IASBE Symposium on Mixed Structures including New Materials, Brussels, 1990, 479–484.

  3. König, G., Duda, H. and Zink, M., ‘New Developments in Prestressed Concrete Bridges, (Neue Entwicklungen im Spannbetonbrückenbau)’, (in German),Beton-und Stahlbetonbau 89 (4) (1994) 85–89.

    Google Scholar 

  4. Yoda, T. and Ohura, T., ‘Torsional behavior of composite PC box girders with corrugated steel webs’,Japanese Society of Civil Engineers 39A (March 1993) 1251–1258.

    Google Scholar 

  5. Combault, J., Lebon, J.D. and Pei, G., ‘Box-girders using corrugated steel webs and balanced cantilever construction’, FIP Symposium, Kyoto, Japan, October 17–20, 1993, 417–424.

  6. Elgaaly, M., Seshadri, A. and Hamilton, R.W., ‘Bending strength of steel beams with corrugated webs’,Journal of Structural Engineering, ASCE 123 (6) (June 1997) 772–782.

    Article  Google Scholar 

  7. Elgaaly, M., Hamilton, R.W. and Seshadri, A., ‘Shear strength of beams with corrugated webs’Journal of Structural Engineering, ASCE 122 (4) (April 1996) 390–398.

    Article  Google Scholar 

  8. Elgaaly, M. and Seshadri, A., ‘Girders with corrugated webs under partial compressive edge loading’,Journal of Structural Engineering, ASCE 123 (6) (June 1997) 783–791.

    Article  Google Scholar 

  9. Johnson, R.P. and Cafolla, J., ‘Fabrication of steel bridge girders with corrugated webs’,The Structural Engineer 75 (8) (April 1997) 133–135.

    Google Scholar 

  10. Johnson, R.P. and Cafolla, J., ‘Local flange buckling in plate girders with corrugated webs’, Proc. Instn Civ. Engrs Structs & Bldgs, Vol. 123, May, 1997, 148–156.

    Google Scholar 

  11. Johnson, R.P. and Cafolla, J., ‘Corrugated webs in plate girders for bridges’, Proc. Instn Civ. Engrs Structs & Bldgs, Vol. 123, May, 1997, 157–164.

    Google Scholar 

  12. Kondo, M., Shimizu, Y., Kobayashi K. and Hattori, M., ‘Design and construction of the Shinkai Bridge—Prestressed concrete bridge using corrugated steel webs,” (in Japanese), Bridge and Foundation, September, 1994, 13–20.

  13. Mizuguchi, K., Ashizuka, K., Furuta, K., Ohura, T., Taki, K. and Kato, T., ‘Design and construction of the Hondani Bridge-PC bridge using corrugated steel webs’, (in Japanese), Bridge and Foundation, September, 1998, 2–9.

  14. Kent, D.C., and Park, R., ‘Flexural members with confined concrete’,J. Struct. Div., ASCE 97 (7) (1971) 1969–1990.

    Google Scholar 

  15. Park, R., Priestley, M.J.N. and Gill, W.D., ‘Ductility of square-confined concrete columns’,J. Struct. Div., ASCE 108 (4) (1982) 929–950.

    Google Scholar 

  16. Muguruma, H., Watanabe, S., Tanaka, S., Sakurai, K. and Nakaruma, E., ‘A Study on the improvement of bending ultimate strain of concrete’,J. Struct. Engng., Tokyo, Japan24 (1978) 109–116.

    Google Scholar 

  17. Muguruma, H., Watanabe, S., Katsuta, S. and Tanaka, S., ‘A stress-strain model of confined concrete’, Proc. JCA Cement and Concrete, Vol. 34, Japan Cement Assn., Tokyo, Japan, 1980, 429–432.

    Google Scholar 

  18. Fujii, M., Kobayashi, K., Miyagawa, T., Inoue, S. and Matsumoto, T., ‘A study on the application of a stress-strain relation of confined concrete’, Proc. JCA Cement and Concrete Vol. 42, Japan Cement Assn., Tokyo, Japan, 1988, 311–314.

    Google Scholar 

  19. Sheikh, S.A., Shah, D.V. and Khoury, S.S., ‘Confinement of high-strength concrete columns’,ACI Struct. J. 123 (10) (1994) 100–111.

    Google Scholar 

  20. Diniz, S.M.C. and Frangopol, D.M., ‘Strength and ductility simulation of high-strength concrete columns’,Journal of Structural Engineering 123 (10) (October 1997) 1365–1373.

    Article  Google Scholar 

  21. Cusson, D. and Paultre, P., ‘Stress-strain model for confined high-strength concrete’,Journal of Structural Engineering 121 (3) (March 1995) 468–478.

    Article  Google Scholar 

  22. Razvi, S.R. and Saatcioglu, M., ‘Confinement model for high-strength concrete’,J. Struct. Engng., ASCE 125 (3) (1999) 281–289.

    Article  Google Scholar 

  23. Saatcioglu, M. and Razvi, S.R., ‘Strength and ductility of confined concrete’,J. Struct. Engrg., ASCE 118 (6) (1992) 1590–1607.

    Google Scholar 

  24. Mo, Y.L., ‘Dynamic Behavior of Concrete Structures’, Elsevier Science Publishers B.V. Amsterdam, Netherlands June., 1994, 424 p.

    Google Scholar 

  25. Mander, J.B., ‘Seismic design of bridge piers’, Ph.D. thesis Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 1983.

    Google Scholar 

  26. Mander, J.B., Panthaki, F.D. and Kasalanti, A., ‘Low cycle fatigue behavior of reinforcing steel’,Journal of Materials in Civil Engineering, ASCE 6 (4) (1994) 453–468.

    Article  Google Scholar 

  27. Monti, G. and Nuti, C., ‘Nonlinear cyclic behavior of reinforcing bars including buckling’,J. Struct. Engrg., ASCE 118 (12) (1992) 3268–3284.

    Google Scholar 

  28. Galambos, T.V., ‘Guide to Stability Design Criteria for Material Structures’, John Wiley &Sons, Inc., New York, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Y.L., Jeng, C.H. & Krawinkler, H. Experimental and analytical studies of innovative prestressed concrete box-girder bridges. Mat. Struct. 36, 99–107 (2003). https://doi.org/10.1007/BF02479523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479523

Keywords

Navigation