Materials and Structures

, 33:207 | Cite as

Ultrasonic wave velocity signal interpretation of simulated concrete bridge decks

  • H. Toutanji
Technical Reports

Abstract

Non-destructive evaluation techniques are used to assess the condition of concrete structures, predict future performance, and monitor repair systems. One of the best known non-destructive evaluation techniques is the ultrasonic pulse velocity technique, which determines both the travel time and velocity of the ultrasonic pulse from the source to the receiver through the tested material. Changes in velocity indicate the presence of anomalies in the material, yet do not enable predicting the severity of the position of such anomalies.

This paper presents the findings of an experimental and analytical study conducted to interpret and characterize the ultrasonic wave signals received from different kinds of anomalies in concrete bridge decks. Both the surface and direct methods were investigated. The frequency spectra of the recorded waveforms were obtained by using the Fast Fourier Transform technique. Specimens with differing artificial cracks were tested in order to study the relationships between the types of cracks, crack depths and the frequency spectra. The sizes of the cracks were estimated using the thin plate and membrane drum as vibration models. The predicted crack sizes corresponded well with the actual sizes. The results presented in this study demonstrate that the ultrasonic pulse velocity technique is a promising means of both providing information about the internal conditions of concrete bridge decks and estimating crack sizes in these structural members.

Keywords

Concrete Slab Pulse Velocity Crack Depth Bridge Deck Ultrasonic Pulse 

Résumé

Des méthodes non-destructives ont été utilisées pour évaluer les conditions des structures en béton, prévoir leur performance future et contrôler les systèmes de réparation. La technique la plus connue est la vitesse de la pulsation ultrasonique. Cette technique détermine le temps de transmission d’une onde ultrasonique depuis la source jusqu’au récepteur à travers le matériau testé. Le changement de la vitesse indique la présence de défauts, la position des défauts ainsi que leur importance ne pourront cependant pas être déterminées à l’aide de cette méthode.

Cet article présente les résultats d’une étude expérimentale et analytique qui a été menée afin d’interpréter et caractériser les signaux des ondes ultrasoniques reçues de différents types de défauts. Les spectres de fréquence des formes des ondes enregistrées ont été obtenus par la technique de la transformée de Fourier. Les échantillons présentant différentes fissures artificielles ont été testés pour étudier les relations entre les types de fissures, leur profondeur et le spectre de fréquence. Les dimensions des fissures ont été estimées à l’aide d’une plaque mince et d’un tambour de membrane comme modèles de vibration. Les dimensions des fissures obtenues correspondent bien aux dimensions prévues. Les résultats présentés dans cette étude démontrent que la technique de la pulsation ultrasonique est un moyen prometteur pour obtenir des informations sur les conditions internes des tabliers de pont en béton et pour estimer les dimensions des fissures dans ces éléments d’ouvrage.

References

  1. [1]
    Chen, H. L., Halabe, U. B., Sami, Z., and Bhandarakar V., ‘Impulse radar reflection waveforms of simulated reinforced concrete bridge decks,’Journal of Materials Evaluation (1994) 1382–1388.Google Scholar
  2. [2]
    Roddis, W. K. K., ‘Concrete bridge assessment using thermography and radar,’ Mater Thesis, Department of Civil Engineering, MIT, Cambridge, MA, 1987.Google Scholar
  3. [3]
    Manning, D. G. and Holt, F. B., ‘Deck assessment by radar and thermography,’Transportation Research in Concrete 1083 (1986) 13–20.Google Scholar
  4. [4]
    Kelsden, J. A., ‘Measuring steel-in-concrete corrosion with an electrical resistance probe,’ Paper 123, Corrosion/73, NACE, Houston, TX, 1980.Google Scholar
  5. [5]
    Lin, L. M. and Sansalone, M., ‘Impact-echo studies of interfacial bond quality in concrete: Part I-Effect of unbonded fraction of area’,ACI Material Journal 3 (93) (1996) 223–232.MATHGoogle Scholar
  6. [6]
    Sansalone, M. and Carino, N. J., ‘Detecting delaminations in concrete slabs with and without overlays using the impact-echo method,’ACI Materials Journal 89 (2) (1989) 175–184.Google Scholar
  7. [7]
    Kaplan, M. F., ‘The relationship between ultrasonic pulse velocity and compressive strength of concrete having the same workability but different mix proportions,’Magazine of Concrete Research 12 (34) (1960) 3–8.Google Scholar
  8. [8]
    Tarun, R. N. and Malhotra, V. M., ‘The ultrasonic pulse velocity method,’ Handbook on Non-destructive Testing of Concrete, CRC Press, Boca Raton, Edited by Malhotra, V. M. and Carino, N. J., 1991, pp. 169–188.Google Scholar
  9. [9]
    Krautkrämer, J. and Krautkrämer, H., ‘Ultrasonic testing of materials’, Springer-Verlag, Fourth Edition, New York, 1987, 239p.Google Scholar
  10. [10]
    Powers, T. C., ‘Measuring Young’s modulus of elasticity by means of sonic vibrations’, Proceedings, ASTM, 1938, Vol. 38, Part II, 460p.Google Scholar
  11. [11]
    Obert, L., ‘Sonic method of determining the modulus of elasticity of building materials under pressure,’ Proceedings, ASTM, 1939, Vol. 29, 987p.Google Scholar
  12. [12]
    Lislie, J. R. and Cheesman, W. J., ‘Ultrasonic method of studying deterioration and cracking in concrete structures’ACI Journal 46 (1) (1949) 17–24.Google Scholar
  13. [13]
    Jones, R., ‘Application of ultrasonic to the testing of concrete’ Research, London, England, 1948, 383 p.Google Scholar
  14. [14]
    Gericke, O. R., ‘Determination of the geometry of hidden defects by ultrasonic pulse analysis testing,’Journal of the Acoustics Society of America 35 (3) (1963) 364–368.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Akashi, T. and Amasaki, S., ‘Evaluation of concrete by ultrasonic spectroscopy,’Cement and Concrete 17 (1) (1987) 12–30.CrossRefGoogle Scholar
  16. [16]
    Sturrup, V. R., Vecchio, F. J. and Caratin, H., ‘Plus velocity as a measure of concrete compressive strength,’ In Situ/Non-destructive Testing of Concrete, SP-82, ACI, Detroit, Michigan, 1984, pp. 201–227.Google Scholar
  17. [17]
    Divis, S. G., ‘The Effect of variations in the aggregate content of concrete columns upon the estimation of strength by the plusvelocity method,Magazine of Concrete Research 29 (98) (1977) 7–12.Google Scholar
  18. [18]
    Every, R. H. and Ibrahim, A.M., ‘Ultrasonic assessment of concrete strength at early ages,’Ibid. 28 (97) (1976) 181–190.CrossRefGoogle Scholar
  19. [19]
    Malhotra, V. M., ‘In Situ/non-destructive Testing of Concrete-A Global review,’ In Situ/Nondestructive Testing of Concrete, SP-82, ACI, Detroit, Michigan, 1984, pp. 1–16.Google Scholar
  20. [20]
    Syam, K. M. and Vipulanandan, C., ‘Non-destructive evaluation of polyester polymer concrete,’ACI Materials Journal 92 (5) (1995) 660–668.Google Scholar
  21. [21]
    Chung, H. W. and Lauer, K. S., ‘Diagnosing in situ concrete by ultrasonic pulse technique,’Concrete international 5 (10) (1993) 42–49.Google Scholar
  22. [22]
    Suari, W. and Fernando, V., ‘Ultrasonic pulse attenuation as a measure of damage growth during cyclic loading of concrete,’ACI Material Journal 84 (2) (1987) 185–193.Google Scholar
  23. [23]
    Green, R. E., Jr., ‘Ultrasonic nondestructive materials characterization,’ Materials Analysis by Ultrasonic, Edited by A. Vary, Noyes Corp., Park Ridge NJ, 1987, pp. 1–12.Google Scholar
  24. [24]
    Yasunori, S. and Masayasu, ‘Crack evaluation in concrete members based on ultrasonic spectroscopy,’ACI Materials Journal 92 (6) (1995) 686–698.Google Scholar
  25. [25]
    ACI Committee 228, ‘In-place methods for determination of strength of concrete’, Manual of Concrete Practice, ACI 228.1R, American Concrete Institute, Detroit, Michigan, 1989.Google Scholar
  26. [26]
    V-Meter Mark II Instruction Manual, James Instruments, Inc., Non-destructive testing Systems, Chicago, Illinois, 1996.Google Scholar
  27. [27]
    TP508 a multifunctional PC measuring instrument user manual, TiePie Engineering, Leeuwarden, Netherlands, 1996.Google Scholar
  28. [28]
    Landau, L. D. and Lifshitz, E. M., ‘Theory of Elasticity,’ Academy of Science, Moscow, 1986, Vol. 7, 69p.MATHGoogle Scholar
  29. [29]
    Lopez, R. M., ‘Acoustic Appendices’, Publication Department at the University School of Technical Engineering (in Spanish), Madrid, Spain, 1983, 814p.Google Scholar
  30. [30]
    Zea, L. Z., ‘The interpretation of ultrasonic wave signals received from concrete decks, with simulated crack, using ultrasonic pulse velocity technique,’ Master Thesis, Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR,(1997).Google Scholar
  31. [31]
    Lopez, R. M., ‘Acoustic’, Publication Department at the University School of Technical Engineering (in Spanish), Madrid, Spain, 1983, pp. 403–407.Google Scholar
  32. [32]
    Kinsler, L. E., Frey, A. R., Coppen, A. B. and Sanders, J. V., ‘Fundamentals of Acoustics’, Third Edition., John Wiley & Sons, 1982, 89p.Google Scholar
  33. [33]
    Feather, N., ‘An introduction to the physics of vibration and waves’, Edinburgh University Press, Chicago, 1963, 304p.Google Scholar
  34. [34]
    Arfken, G. B. and Weber, H. J., ‘Mathematical methods for physicists’, Fourth Edition, 1996,pp. 627–635.Google Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • H. Toutanji
    • 1
  1. 1.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations