Skip to main content
Log in

Strength of shear connection in composite bridges with precast decks using high performance concrete and shear-keys

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, a connection between precast beam and precast slabl to be used in decks of precast composite bridges is studied. The difference between this connection and the common connection used in bridge construction is that in this paper the steel connector is associated with a shear-key which is formed on the top face of the precast beam, and a high, performance concrete is used to fill out the shear pockets. The connector is formed by steel bars bent in a hoop form, which are inserted in pockets of the precast slab. The connection is made filling out the shear pockets with steel fiber reinforced concrete. Push-out tests were carried out to evaluate the strength of the shear connection. From these tests expressions based on a shear-friction model are proposed to evaluate the strength of the shear connection taking into account the compressive strength of the concrete cast in the pocket, the diameter of the connector and the addition of steel fibers to cast-in-place concrete. These expressions were shown to be appropriate to evaluate the strength of a shear connection, since the failure of precast concrete is avoided near the connection.

Résumé

Dans cet article, on étudie le joint entre poutres et dalles pré-fabriquées en béton, employées dans les plateaux des ponts composés, préfabriqués. La différence entre ce joint et ceux habituellement employés dans la construction de ponts demeure, entre l'association des connecteurs métalliques avec des joints crantés confectionnés sur le côté, supérieur de la poutre pré-fabriquée et l'emploi de béton de haute performance pour remplir la niche de la dalle. Les connecteurs métalliques sont formés d'armatures en acier courbé en boucle qui sont introduites dans les niches de la dalle pré-fabriquée. Le joint est à posteriori réalisé en remplissant les niches avec du béton renforcé de fibres d'acier. On a réalisé des essais de cisallement direct à partir desquels sont proposées des formules empiriques basé sur théorie du frottement-cisaillement pour l'évaluation de la résistance du joint. Celles-ci prennent en considération la résistance elle-même à la compression du béton moulé dans les niches, le diamètre du connecteur et l'addition de fibres d'acier au joint. Ces formules se sont montrées convenables à l'évaluation de la résistance du joint, pourvu que la rupture des piéces pré-fabriquées soit évitée à sa proximité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Es :

modulus of elasticity of steel

Fexp :

maximum load of connection obtained from tests

R:

correlation factor

Vf :

volume of fibers in percent

fc, fcm :

average compressive strength of concrete obtained from tests on 100 mm×200 mm cylinders

fctm, sp :

average tensile splitting strength of concrete obtained from tests on 100 mm×200 mm cylinders

fy :

yield strength of steel

δm :

average slide at maximum load of connection in push-out tests

εs :

strain of connector at maximum load of connection in push-out tests

φs :

diameter of connector

ρ:

geometric ratio of transversal steel in connection

σn :

normal stress by connector on shear-off plane at maximum load

τu, τu,1, τu,2 :

ultimate shear strength of connection obtained from tests and using empirical expressions

References

  1. Shim, C.S., Lee, P.G. and Chang, S.P., ‘Design of shear connection in composite steel and concrete bridges with precast decks’,Journal of Constructional Steel Research 57 (3) (2001) 203–219.

    Article  Google Scholar 

  2. Lam, D., Elliott, K.S. and Nethercot, D.A., ‘Designing composite steel beams with precast concrete hollow-core slabs’,Proceedings of the Institutional Engineering Structures & Buildings 140 (2000) 139–149.

    Google Scholar 

  3. Lam, D., Elliott, K. S. and Nethercot, D.A., ‘Experiments on composite steel beams with precast concrete hollow core floor slabs’,Proceedings of the Institutional Engineering Structures & Buildings 140 (2000) 127–138.

    Google Scholar 

  4. Issa, M.A., Yousif, A.A. and Issa, M.A., ‘Experimental behavior of full-depth precast concrete panels for bridge rehabilitation’,ACI Structural Journal 97 (3) (2000) 397–407.

    Google Scholar 

  5. Yamane, T., Tadros, M.K., Badie, S.S. and Baishya, M.C., ‘Full depth precast, prestressed concrete bridge deck system’,PCI Journal 43 (3) (1998) 50–66.

    Google Scholar 

  6. Issa, M.A., Yousif, A.A., Issa, M.A., Kaspar, I.I. and Khayyat, S.Y., ‘Analysis of full depth precast concrete bridge deck panels’,PCI Journal 43 (1) (1998) 74–85.

    Google Scholar 

  7. Lam, D., Elliot, K.S. and Nethercot, D.A., ‘Push-off tests on shear studs with hollow-cored floor slabs’,The Structural Engineer 76 (9) (1998) 167–174.

    Google Scholar 

  8. Araújo, D.L., ‘Shear between precast beam and precast slab joined by pockets filled with high performance concrete’, PhD Thesis. (Engineering School of São Carlos, University of São Paulo, 2002) [only available in Portuguese].

  9. Araújo, D.L. and Debs, M.K., ‘Application of high performance concrete to the connection between precast beam and precast slab’, in ‘High-Performance, Concrete: Performance and Quality of Concrete Structures’, Proceedings of the 3rd International Conference, Recife, 2002. (ACI, Farmington Hills, 2002, SP-207) 339–359.

  10. British Standards Institution—BSI. ‘Steel, concrete and composite bridges. Part 5: code of practice for design of composite bridges’ (BS 5400: Part 5: 1979).

  11. Birkeland, P.W. and Birkeland, H.W., ‘Connections in precast concrete construction’,Journal of American Concrete Institute, Proceedings 63 (3) (1966) 345–367.

    Google Scholar 

  12. Mattock, A.H., Comments on ‘Horizontal shear strength of composite concrete beams with a rough interface’,PCI Journal 39 (5) (1994) 106–108.

    Google Scholar 

  13. Mattock, A.H., Comments on ‘Influence of concrete strength and load history on the shear friction capacity of concrete members’,PCI Journal 33 (1) (1988) 166–168.

    Google Scholar 

  14. Mattock, A.H., ‘Shear friction and high-strength concrete’,ACI Structural Journal 98 (1) (2001) 50–59.

    Google Scholar 

  15. Bakhoum, M.M., ‘Shear behavior and design of joints in precast concrete segmental bridges’, PhD Thesis (Massachusetts Institute of Technology, Cambridge Mass, 1991)

    Google Scholar 

  16. Soroushian, P. and Mirza, F., ‘Effects of fiber reinforcement on cyclic behavior of dowel bars’,Journal of Structural Engineering 117 (3) (1991) 822–828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, D.L., El Debs, M.K. Strength of shear connection in composite bridges with precast decks using high performance concrete and shear-keys. Mat. Struct. 38, 173–181 (2005). https://doi.org/10.1007/BF02479342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479342

Keywords

Navigation