Advertisement

Materials and Structures

, Volume 38, Issue 3, pp 403–410 | Cite as

L'emploi de métakaolin dans la production de béton écologiquement efficace

  • L. A. P. Oliveira
  • S. Jalali
  • J. M. Fernandes
  • E. Torres
Scientific Reports

Résumé

Les matériaux d'addition font actuellement partie des développements les plus récents dans la production du béton, car l'utilisation des additions apporte une amélioration des propriétés mécaniques et de la durabilité du béton. D'autre part leur utilisation a pour objectif de réduire la consommation de ciment, en contribuant de manière simple et économique à résoudre les problèmes liés à l'environment. Cet article étudie les avantages et les limitations de la substitution partielle du ciment par le métakaolin. Les résultats obtenus démontrent que cette substution apporte, pour le béton de même ordre de résistance à la compression, une amélioration considérable au niveau de la durabilité. Ce qui permet de conclure que le métakaolin est un substitut efficace capable de réduire le contenu de ciment pour l'obtention de bétons équivalents.

The use of metakaolin to produce the eco-efficient concrete

Abstract

One of the more recent developments in the production of concrete is the use of additions, resulting in a significant improvement to the mechanic and durability performances of concrete. Furthermore, to the extent that it leads to a reduction in cement consumption, the use of additions contributes to solving environmental problems in a simple and economic manner. This article presents a study of the advantages and limitations of the partial replacement of cement by metakaolin in concrete. Its results demonstrate that such a substitution provides considerable improvements at the level of durability for concretes of the same level of compressive strength. This indicates that metakaolin is indeed an efficient substitute to cement, and its use results in the production of equivalent concretes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Caldarone, M.A., Gruber, K.A. and Burg, R.G., ‘High-reactivity metakaolin: a new generation mineral admixture’,Concrete International 16 (11) (1994) 37–40.Google Scholar
  2. [2]
    Marsh, D., ‘An alternative to silica fume’Concrete Production 97 (11) (1994) 24–30.Google Scholar
  3. [3]
    Wild, S., Khatib, J. and Roose, L.J., ‘Chemical and autogenous shrinkage or Portland cement-metakaolin pastes’,Advanced Cement Research 10 (3) (1998) 109–119.Google Scholar
  4. [4]
    Rols, S., Mbessa, M., Ambroise, J. and Péra, J., ‘Influence of ultra-fine particle type on properties of very-high-strength concrete’, in Malhotra, V.M., Helene, P., Prudencio, L.R., Dal Molin, D.C.C., editors, Proceedings of the Second CANMET/ACI International Conference on High Performance Concrete and Performance and Quality of Concrete Structures, Gramado, RS, Brazil, 1999, 671–686.Google Scholar
  5. [5]
    Marwan, T., Péra, J. and Ambroise, J., ‘The action of some aggressive solutions on Portland and calcined laterite blended cement concretes’, in: Malhotra V.M., editor. Proceedings of the Fourth International Conference on Fly Ash, Silica fume, Slag and Natural Pozzolans in Concrete. Vol I. Instanbul, Turkey, May 1992, 763–779.Google Scholar
  6. [6]
    Bosc, J.L., Kouame, K. and Péra, J., ‘Improvement of concrete durability in tropical marine environment by adding métakaolin and superplasticisers’, in Proceedings of the Sixth International Conference on Durability of Building Materials and Components, Vol. 1. Omiya, Japan, 1993, 448–457.Google Scholar
  7. [7]
    Khatib, J. and Wild, S., ‘Sulphate resistance of metakaolin mortar’,Cement Concrete Research 28 (1) (1998) 83–92.CrossRefGoogle Scholar
  8. [8]
    Péra, J., Rols, S., Chabannet, M. and Ambroise, J., ‘Influence of the cement type on the resistance of concrete to an agricultural environment’, in: Cohen, M., Mindess, S., Skalny, J., editors. Materials Sciences of Concrete: The Sidney Diamond Symposium (The American Concrete Society, 1998) 419–430.Google Scholar
  9. [9]
    Sabir, B.B., Wild, S. and Bai, J., ‘Metakaolin and calcined clays as pozzolans for concrete: a review’,Cement & Concrete Composites 23 (2001) 441–454.CrossRefGoogle Scholar
  10. [10]
    Dunster, A.M., Parsonage, J.R. and Thomas, M.J.K., ‘The pozzolanic reaction of metakaolin and its effects on PC hydration’,Journal of Materials Science 28 (1993) 1345–1350.CrossRefGoogle Scholar
  11. [11]
    Coutinho, A.S. and Gonçalves, A., ‘Production and properties of Concrete’ (LNEC, Lisbon, 1994) [only available in Portuguese].Google Scholar
  12. [12]
    Liu, J.N., ‘Strength and hydration of an activated aluminosilicate material’, Pennsylvania State University, USA, 1998.Google Scholar
  13. [13]
    Faury, J., ‘Le béton. Influence de ses constituants inertes. Règles à adopter pour sa meilleure composition. Sa confection et son transport sur les chantiers’ (Dunod, Paris, 1958).Google Scholar
  14. [14]
    LNEC—E226, ‘Concrete: Compression Test’, LNEC, Lisboa, 1968 [only available in Portuguese].Google Scholar
  15. [15]
    Luping, T., ‘Chloride transport in concrete—Measurement and prediction’, Doctoral Thesis, Chalmers University of Technology, Gothenburg, Sweden, 1996.Google Scholar
  16. [16]
    LNEC—E393, ‘Concretes: Determination of capillarity water absorption’, LNEC, Lisbon, 1993 [only available in Portuguese].Google Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • L. A. P. Oliveira
    • 1
  • S. Jalali
    • 2
  • J. M. Fernandes
    • 2
  • E. Torres
    • 1
  1. 1.Département de Génie CivilUniversité de Beira InteriorCovilhãPortugal
  2. 2.Département de Génie CivilUniversité de MinhoGuimarãesPortugal

Personalised recommendations