Skip to main content
Log in

Influence of composite materials confinement on alkali aggregate expansion

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The Alkali-Aggregate Reaction (AAR) is a group of physicochemical reactions which occurs in the concrete between the interstitial solution (highly alkaline) and some mineral phases in the aggregates. The damage induced by the AAR to the concrete could be very important. Many old structures are attacked or will be attacked by AAR. Remedial measures to repair or limit the problem exist but they are often only partially effective and very expensive. The aim of our research is to carry out an experimental procedure in order to evaluate the influence of advanced composite materials confinement on the expansion and the mechanical behaviour of the alkali-aggregate reactive concrete.

Résumé

L'alcali réaction est un ensemble de réactions physico-chimiques dans le béton qui peuvent se produire entre la solution interstitielle (fortement alcaline) et certaines phases minérales présentes dans les granulats. Les dommages causés au béton par l'alcali réaction peuvent être très importants. Beaucoup de structures sont attaquées ou le seront par l'alcali réaction. Les remèdes pour réparer ou diminuer l'alcali réaction existent mais ils sont souvent peu efficaces et très chers. Le but de notre travail de recherche est d'évaluer expérimentalement l'influence des matériaux composites sur l'expansion et le comportement mécanique du béton alcali-réactif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanton, ‘Studies to develop an accelerated test procedure for the determination of adversely reactive cement-aggregate combination’, in ‘ASTM Proceedings’, 1943, 43–875.

  2. Fournier, B. and Bérubé, M.A., ‘Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications’,Canadian Journal of Civil Engineering 27 (2) (April 2000) 167–191.

    Article  Google Scholar 

  3. Dent Glasser, L.S. and Kataoka, N., ‘The chemistry of alkali-aggregate reaction’,Cement Concrete Research 11 (1981) 1–9.

    Article  Google Scholar 

  4. Dent Glasser, L.S. and Kataoka, N., ‘The chemistry of alkali-aggregate reaction’, in ‘Alkali-Aggregate Reaction in Concrete’, Proceedings of the 5th International Conference, Cape Town, South Africa, 1981, 252.

  5. Ludwig, U. and Sideris, K., ‘Mécanisme et mode d'action de la réaction alcali granulat’,Sprechsaal für Keramik. Glass, Baustoffe 108 (5–6) (1975) 128–148 [only avalaible in German].

    Google Scholar 

  6. Dron, R. and Brivot, F., ‘Thermodynamic and kinetic approach to the alkali-silica reaction. Part 1: concepts’,Cement and Concrete Research 22 (5) (1992) 941–948.

    Article  Google Scholar 

  7. LCPC, ‘Recommandations pour la prévention des désordres dus à l'alcali réaction’ (LCPC, 1994).

  8. ASSHTO, ‘Guide Specification for ASR-Resistant Concrete’ (American ASsociation of Highway Transportation Officials, 1998).

  9. CSAA23.1-M94, ‘Concrete Materials and Methods of Concrete Construction—Appendix B: Alkali-Aggregate Reaction’, (Canadian Standards Association, Rexdale, Ontario, 1994).

  10. Calgaro, J.A., ‘Origines des désordres dans les ponts’, in ‘Maintenance et réparation des ponts’ sous la direction de Calgaro J.A. et Lacroix R. (Presses de l'École Nationale des Ponts et Chaussées, 1997) 19–76.

  11. Salomon, M., ‘Dégradation des ouvrages par l'alcali réaction’, in ‘Maintenance et réparation des ponts’ sous la direction de Calgaro J.A. et Lacroix R. (Presses de l'école nationale des Ponts et Chaussées, 1997) 347–388.

  12. Sims, I. and Nixon, P., ‘RILEM Recommended Test Method AAR-0: Detection of Alkali-Reactivity Potential in concrete —Outline guide to the use of RILEM methods in assessments of aggregates for potential alkali-reactivity’,Mater. Struct. 36 (261) (Aug–Sept. 2003) 472–479.

    Article  Google Scholar 

  13. Hobbs, D.W., ‘Alkali-silica reaction in concrete’, (Thomas Telford, London, 1988).

    Google Scholar 

  14. Krell, J., ‘Influence of mix design on alkali-silica reaction in concrete’, in ‘Alkali-Aggrregate Reaction in concrete’, Proceedings of the 7th International Conference, Ottawa, Canada, 1986, 441–445.

  15. ‘Alkali-aggregate reaction’, Proceedings of the 11th International Conference, Quebec City, Canada, June 2000 (edited by M.A. Berube, B. Fournier, B. Durand).

  16. Ranc, R., Sorrentino, D. and Cariou, B., ‘Réactions silicoalcalines, mise au point de méthodes fiables’,Annales de l'ITBTP,225 (480) (janvier 1990) 107–129.

    Google Scholar 

  17. Guedon Dubied, J.S., Cadoret, G., Durieux, V., Martineau, F., Fasseu, P. and Van Overbeke, V., ‘Etude du calcarire Tournaisien de la carrière Cimescaut à Antoing (Belgique)’,Bulletin du LCPC 226 (2000) 57–66.

    Google Scholar 

  18. Gay, D., ‘Matériaux composites’, 4e Edn. (Hermes, Paris, 1997).

    Google Scholar 

  19. Varastehpour, H. and Hamelin, P., ‘Les poutres BA mettant en oeuvre des matériaux composites’,Journal de la mécanique industrielle et des matériaux 48 (2) (juin 1995).

  20. Ferrier, E. and Hamelin, P., ‘Long time concrete composite interface characterization for reliability prediction of RC beam strengthened with FRP’,Mater. Struct. 35, (253) (Nov. 2005) 564–572.

    Article  Google Scholar 

  21. Larive, C. ‘Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'alcali-réaction et de ses effets mécaniques’ (Étude et recherches des laboratoires des ponts et chaussées, Décembre 1998).

  22. Li, K., Ulm, F., Coussy, D., Larive, C. and Fan, L., ‘Chimioelastic modelling of alkali-silica reaction in concrete’ in ‘Alkali-aggregate reaction’, Proceedings of the 11th International Conference, Quebec City, Canada, June 2000, 989–1008.

  23. Sellier, A., ‘Modélisation probabilistique du comporeement de matériaux et de structures en génie civil’ (ENS de Cachan, Décemembre, 1995).

  24. Mohamed, I., Ferrier, E., Curtil, L. and Hamelin, P., ‘The role of composite materials in concrete durability. Case study of alkali-aggregate reaction’ in ‘Non-metallic reinforcement for Concrete Structures’, Proceedings of FRPRCS-5, Cambridge, UK, July 2001, 45–52.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Prof. Patrice Hamelin is a RILEM Senior Member. He participates in the work of RILEM TC TRC ‘Textile reinforced concrete’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, I., Curtil, L., Ronel-Idrissi, S. et al. Influence of composite materials confinement on alkali aggregate expansion. Mat. Struct. 38, 387–394 (2005). https://doi.org/10.1007/BF02479306

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479306

Keywords

Navigation