Skip to main content
Log in

Alkali-aggregate reaction in Swiss tunnels

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Currently the work for two new railway tunnels through the Swiss Alps with a length of 35 and 57 km respectively is in progress. Prepared aggregates quarried from the tunnels are reused for the concrete. About 50% of these aggregates are classified as reactive in regard to alkali-aggregate reaction (AAR) according to the AFNOR P 18-588 microbar test. In order to obtain information about AAR in concrete exposed to underground conditions, eight existing tunnels are investigated in this study. The concrete and shotcrete of the 16 coring sites studied is between 19 and 44 years old. The visual inspection of the tunnels and the physical properties of the concrete and shorcrete indicate no substantial damage although signs for AAR are present in the majority of the samples. Furthermore, the aggregates of seven coring sites are classified as reactive, but they obviously do not reach their reaction potential. A possible reason might be the minor climatic fluctuations in the tunnels. The results of this study indicate that reactive aggregates might be used for concrete in tunnels without causing damage due to AAR.

Résumé

Actuellement deux nouveaux tunnels ferroviaires d'une longueur de respectivement 35 et 57 km, sont en cours de construction à travers les Alpes suisses. Les déblais de roches produits par leur percement sont traités et recyclés comme granulats pour la confection du béton utilisé dans ces tunnels. Selon les essais réalisés avec le test Microbar selon la norme AFNOR P 18-588, environ 50% de ces granulats sont à classer comme réactifs pour ce qui est de la réaction alcalis-granulats (RAG). Afin d'obtenir des informations sur la RAG dans le béton des tunnels, on a procédé à une étude sur huit tunnels existants. Le béton et le béton projeté des 16 carottages réalisés étaient âgés de 19 à 44 ans. L'inspection visuelle des tunnels ainsi que la détermination des caractéristiques mécaniques des bétons n'ont révélé aucun dommage substantiel, cela bien que la majorité des éprouvettes examinées présentât des signes d'une RAG. Par ailleurs les granulats de sept de ces carottages sont à classer comme réactifs. Manifestement ces granulats n'ont pas pu développer totalement leur potentiel de réactivité. Une des causes possibles de ce comportement pourrait résider dans les faibles variations climatiques existant dans les tunnels. Les résultats de cette étude montrent qu'il est possible d'utiliser des granulats réactifs pour les bétons destinés à être mis en place dans les tunnels sans qu'il se produise de dommages par réaction alcalis-granulats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hobbs, D.W., ‘Alkali-silica reaction in concrete’ (Thomas Telford, London, 1988).

    Google Scholar 

  2. Swamy, R.N., ‘The alkali-silica reaction in concrete’ (Blackie, Glasgow, 1992).

    Google Scholar 

  3. Regamey, J.M. and Hammerschlag, J.G., ‘Barrage de l'Illsee —assainissement’, Research and Development in the Field of Dams, Proceedings of ICOLD-Symposium (Crans-Montana, Switzerland, 1995).

  4. Leemann, A., Thalmann, C. and Kruse, M., ‘Broken Aggregates’,Schweizer Ingenieur- und Architektenverein, SI+A 24 (1999) 4–8 [only available in German].

    Google Scholar 

  5. Thalmann, C., Zingg, J., Rytz, G., Strahm, K. and Wyss, C., ‘Prevention of damage to concrete structure due to alkali-aggregate reaction’,Schweizer Ingenieur- und Architektenverein, tec 21 15 (2001) 2–8 [only available in German].

    Google Scholar 

  6. AFNOR P18-588, ‘Granulats—stabilité dimensionnelle en milieu alcalin (essai accéléré sur mortier MICROBAR), Association Française de Normalisation (Paris, 1991).

  7. Thalmann, C., ‘AAR-prevention for the world's longest tunnel—AlpTransit Gotthard and Lötschberg in Switzerland’, Proceedings of the 12th ICAAR (Beijing, China, 2004) accepted.

  8. SIA 162/1, ‘Concrete structures’, Materialprüfungen, Schweizer Norm 562 162/1 (1989) [only available in German].

  9. Sims, I. and Nixon, P., ‘RILEM Test recommended test method AAR-1: Detection of potential alkali-reactivity of aggregates—petrographic method’,Mater. Struct. 36 (2003) 472–479.

    Article  Google Scholar 

  10. Hammerschlag, J.-G. and Zgraggen, P., ‘Assessment of the alkali-aggregate reaction of the aggregates and some concrete mixes for the Alptransit tunnel projects Gotthard and Lötschberg’, TFB-Bericht, Projekt 998055, Ref. 05.001/2 (2000) [only available in German].

  11. Oberholster, R.E., ‘Alkali reactivity of siliceous rock aggregates: diagnosis of reaction, testing of cement and aggregate and prescription of preventive measures’ Proceedings of the 6th ICAAR (Copenhagen, Denmark, 1983) 419–433.

  12. ASTM C 1260-01, ‘Standard test method for potential alkali reactivity of aggregates (mortar-bar method)’, ASTM Standards in Building Codes (2003) 681–85.

  13. RILEM TC-106-2, ‘Detection of potential alkali-reactivity of aggregates—The ultra-accelerated mortar-bar test’,Mater. Struct. 33 (2000) 283–293.

    Google Scholar 

  14. Nilsson, L.O., ‘Moisture effects on the alkali-silica reaction’, Proceedings of the 6th ICAAR (Copenhagen, Denmark, 1983) 201–208.

  15. Poole, A.B., ‘Introduction to alkali-silica reaction in concrete’, in: Swamy, R.N., ‘The alkali-silica reaction in concrete’ (Blackie, Glasgow, 1992) 1–29.

    Google Scholar 

  16. Jones, F.E. and Tarleton, R.D., ‘Reactions between aggregates and cement’, National Building Research Paper 25, Pt IV. (HMSO, London, 1958).

    Google Scholar 

  17. AFNOR P18-454, ‘Réactivité d'une formule de béton vis-à-vis de l'alcali-réaction (essai de performance)’, Association Française de Normalisation (Paris, 2004).

  18. St. John, D.A., Poole, A.W. and Sims, I., ‘Concrete Petrography’ (Arnold, London, 1998).

    Google Scholar 

  19. Bérubé, M.A., Duchesne, J., Dorion, J.F. and Rivest, M., ‘Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity’,Cem. Concr. Res. 32 (2002) 1215–1227.

    Article  Google Scholar 

  20. Leemann, A. and Holzer, L., ‘Alkali-aggregate-reaction: identification of reactive silicates’, Proceedings of the 9th Euroseminar of Microscopy (Trondheim, Norway, 2003).

  21. Constantiner, D. and Diamond, S., ‘Alkali release from feldspars into pore solutions’,Cem. Concr. Res. 33 (2003) 549–554.

    Article  Google Scholar 

  22. Rodrigues, F. A., Monteiro, P.J.M. and Sposito, G., ‘The alkali-silica reaction: the surface charge density of silica and its effect on expansive pressure’,Cem. Concr. Res. 29 (1999) 527–530.

    Article  Google Scholar 

  23. Chatterji, S. and Thaulow, N., ‘Some fundamental aspects of alkali-silica reaction’, Proceedings of the 11th ICAAR (Québec, Canada, 2000) 21–29.

  24. Kawamura, M. and Iwahori, K. ‘ASR gel composition and expansive pressure in mortars under restraint’,Cem. Concr. Comp. 26 (2004) 47–56.

    Article  Google Scholar 

  25. Andrade, C., Sarria, J. and Alonso, C., ‘Relative humidity in the interior of concrete exposed to natural and artificial weathering’,Cem. Concr. Res. 29 (1999) 1249–1259.

    Article  Google Scholar 

  26. Xu, Z. and Hooton, R.D., ‘Migration of alkali ions in mortar due to several mechanisms’,Cem. Concr. Res. 23 (1993) 951–961.

    Article  Google Scholar 

  27. Dombrowski, K., ‘Influence of aggregates on the durability of concrete’, PhD Thesis, Bauhaus-Universität Weimar (Germany, 2003) [only available in German].

    Google Scholar 

  28. Grattan-Bellew, P.E., ‘A critical review of ultra-accelerated tests for alkali-silica reactivity’,Cem. Concr. Comp. 19 (1997) 403–413.

    Article  Google Scholar 

  29. Whiting, N.M., ‘Comparison of field observations with laboratory test results on concretes undergoing alkali-silica reaction’,Cem. Concr. Aggr. 21 (2) (1999) 142–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note The Swiss Federal Laboratories for Materials Testing and Research (EMPA) is a RILEM Titular Member. Dr. Andreas Leemann participates in RILEM TC 188-CSC ‘Casting of self-compacting concrete’ and DSC ‘Durability of self-compacting concrete’. Mr. Werner Studer is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leemann, A., Thalmann, C. & Studer, W. Alkali-aggregate reaction in Swiss tunnels. Mat. Struct. 38, 381–386 (2005). https://doi.org/10.1007/BF02479305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479305

Keywords

Navigation