Materials and Structures

, Volume 38, Issue 3, pp 343–351 | Cite as

Shear behaviour of steel fibre reinforced concrete beams

  • A. Meda
  • F. Minelli
  • G. A. Plizzari
  • P. Riva
Scientific Reports


The possibility of substituting traditional transverse reinforcement (stirrups) for steel fibres in precast elements can significantly reduce production costs. In the present paper, the shear behaviour of prestressed elements has been investigated by means of experimental tests on full scale beams. Tests concern beams with conventional as well as steel fibre reinforcement. Experimental results show that the shear behaviour of fibre reinforced concrete beams without conventional reinforcement is similar to, or even better than that of beams with stirrups. When used in beams with stirrups, steel fibres significantly improve their shear strength. A discussion on the contribution of steel fibres on the shear strength is also presented, with reference to the latest RILEM provisions.


Shear Strength Steel Fibre Concrete Beam Shear Behaviour Transverse Reinforcement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La possibilité de remplacer des armatures transversales traditionnelles par des fibres d'acier dans des éléments pré-tendus peut apporter des améliorations considérables sur les performances structurales. Dans ce rapport, le comportement en cisaillement des éléments précontraints a été étudié à l'aide de tests expérimentaux sur des poutres à échelle grandeur nature. Les essais portent aussi bien sur des poutres avec armatures traditionnelles que sur des poutres renforcées à l'aide de fibres. Les résultats expérimentaux montrent que les performances des poutres en béton de fibres sans armatures traditionnelles sont similaires, sinon meilleures, à celles des poutres avec armature ordinaire de cisaillement. Lorsqu'elles sont utilisées dans des poutres avec armatures traditionnelles les fibres d'acier améliorent considérablement leur résistance en cisaillement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Walraven, J., ‘The evolution of Concrete’,Structural concrete 1 (1999) 3–11.Google Scholar
  2. [2]
    Di Prisco, M. and Toniolo, G., ‘Structural applications of steel fibre reinforced concrete’, Proceedings of the international workshop, Milan (Italy), April 4, 2000, (CTE publ., Milan (Italy), 2000).Google Scholar
  3. [3]
    ACI 544.4R, ‘Design Considerations for Steel Fibre Reinforced Concrete’ (Reported by ACI Committee 544),ACI Structural Journal 85 (5) (1988) 563–580.Google Scholar
  4. [4]
    Falkner, H., Henke, V. and Hinke, U., ‘Reinforced concrete for deep pits in buildings in ground water’,Bauingenieur 72 (1997) 47–52 [Only available in German].Google Scholar
  5. [5]
    Plizzari, G.A., Cangiano, S. and Cere, N., ‘Postpeak behaviour of fibre-reinforced concrete under cyclic tensile loads’,ACI Materials Journal 97 (2) (2000) 182–192.Google Scholar
  6. [6]
    Failla, C., Toniolo, G. and Ferrara L., ‘Structural design of prestressed precast roof elements made with steel fibre reinforced concrete’, in ‘BIBM 2002’, proceedings of the International Conference, Istanbul, May 1–4, 2002 (proceedings on CD-ROM).Google Scholar
  7. [7]
    Noghabai, K., ‘Beams of fibrous concrete in shear and bending: experiment and model’,Journal of Structural Engineering 126 (2000) 243–251.CrossRefGoogle Scholar
  8. [8]
    Casanova, P., Rossi, P. and Schaller, I., ‘Can steel fibres replace transverse reinforcement in reinforced concrete beams?’,ACI Material Journal 94 (1997) 341–354.Google Scholar
  9. [9]
    Williamson, G.R., ‘Steel Fibres as web reinforcement in Reinforced Concrete’, Proceedings, U.S. Army Service Conference, West Point, N.Y.,3, 1978, 363–377.Google Scholar
  10. [10]
    Di Prisco, M. and Ferrara, L., ‘HPFRC pre-stressed thin-web elements: some results on shear resistance’, in ‘Fracture Mechanics of Concrete Structures’, Proceedings of the International Conference, R. de Borst, J. Mazars, G. Pijaudier-Cabot, J.G.M. van Mier Editors (A.A. Balkema Publishers, Lisse, The Netherland, 2001).Google Scholar
  11. [11]
    Rosenbusch, J. and Teutsch, M., ‘Shear Design with σ-ε-Method’, RILEM Proceedings PRO 31, Test and Design Method for Steel Fibre Reinforced Concrete-Background and Experiences (RILEM Publications sarl, Bagneux, France, 2003).Google Scholar
  12. [12]
    EUROCODE 2, Design of Concrete Structures, UNI-ENV 1992-1-2, 1993.Google Scholar
  13. [13]
    RILEM Final Recommendations TC-162-TDF, ‘Test and design methods for steel fibre reinforced concrete; σ-ε design method’,Mater. Struct. 36 (2003) 560–567.CrossRefGoogle Scholar
  14. [14]
    EUROCODE 2, Design of Concrete Structures, prEN 1992 ver. December 2003.Google Scholar
  15. [15]
    UNI 11039, ‘Steel fibre reinforced concrete-Part I: Definitions, classification specification and conformity-Part II: test method for measuring first crack strength and ductility indexes’, Italian Board for Standardization, 2003.Google Scholar
  16. [16]
    Park, R. and Paulay, T., ‘Reinforced Concrete Structures’ (Wiley-Interscience publication, New York, 1975).Google Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • A. Meda
    • 1
  • F. Minelli
    • 2
  • G. A. Plizzari
    • 1
  • P. Riva
    • 2
  1. 1.Department of engineering design and technologiesUniversity of BergamoItaly
  2. 2.Department of civil engineeringUniversity of BresciaItaly

Personalised recommendations